
Binary.com’s	volatility	calibration	model	(a	variant	of	SABR)	
	
Introduction	
	
The	SABR	(Stochastic	alpha,	beta,	rho)	model	is	a	stochastic	volatility	model,	which	is	used	
to	estimate	the	volatility	smile	in	the	derivatives	market.	For	a	more	general	overview	of	the	
general	SABR	model,	please	refer	https://en.wikipedia.org/wiki/SABR_volatility_model.	
	
The	implied	vol	approximation	from	the	general	SABR	model	is	approximately	given	by	
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where	all	the	terms	are	as	defined	in	the	Wikipedia	page	mentioned	above.	
	
This	term	is	basically	expressing	implied	volatility	as	a	function	of	some	sort	of	moneyness	
function	(the	alpha	Log(F0/K)/D(....)	part.	This	term	is	being	adjusted	by	some	factor	in	
square	brackets	and	then	added	back.	We	are	going	to	modify	the	term	in	square	brackets	
in	this	model.	
	
Definition	
	
Moneyness	is	always	calculated	with	respect	to	spot.	
	
	 Moneyness	=	Strike/Spot.	
	
Correlation:	Denotes	correlation	between	stock	returns	and	implied	volatility	of	the	options.	
This	is	not	simply	the	statistical	correl	function	in	excel.	It	is	calculated	using	some	other	
function	based	on	kurtosis	and	skew.	Discussed	later.		
	
Skew:	Implied	volatility	of	90%	Strike	minus	Implied	Volatility	of	100%	Strike.	This	is	scaled	
by	square	root	of	maturity.	
	
Overview	
	
Any	distribution	can	be	visibly	perturbed	using	ATM	Vol,	Skew	&	Kurtosis.	This	model	
accepts	these	parameters	and	some	other	finer	parameters	to	generate	an	extremely	
smooth	surface.		
	
When	skew	is	very	high	it	means	OTM	puts	are	priced	at	high	premiums	compared	to	ATM.	
Likewise	if	skew	is	very	low	OTM	puts	are	priced	at	low	premiums	compared	to	ATM.	When	
skew	increases	from	low	to	high,	what	is	the	behavior	of	correlation	between	stock	&	
volatility?	
	



When	the	market	is	falling	drastically	and	volatility	is	increasing	this	implies	Correlation	=	
High.	When	the	market	is	stable,	and	volatility	is	low	implies	that	Correlation	=	Low.	
Hence	it	can	be	said	that	the	correlation	between	an	index	and	volatility	increases	as	
negative	skew	increases.	Kurtosis	signifies	that	the	volatility	is	clustered	around	the	mean	or	
that	the	distribution	of	ATM	vol	for	different	maturities	will	be	similar.	So	high	kurtosis	
means	vols	are	clustered	in	the	middle	of	the	distribution	and	index	movements	will	not	
cause	much	change	in	volatility.	Hence	lower	correlation.	
	
Similarly	when	low	Kurtosis	in	volatility	signifies	that	volatility	is	very	dispersed	or	that	small	
changes	in	the	index	might	cause	higher	volatility	changes.	Hence	for	this	case	correlation	
between	the	index	and	volatility	is	high.	So	Kurtosis	High	implies	Correlation	Low,		Kurtosis	
Low	implies	Correlation	High.	
	
Some	quants	might	question	this	approach	and	say	“Why	not	just	use	a	simple	correl	
function	to	calculate	correlation	between	index	returns	and	volatility?”.	In	a	perfect	world	
this	should	be	done	but	since	the	correlation	value	obtained	using	the	correl	function	
(assuming	excel)	is	unstable,	this	is	not	a	practical	approach.	This	leads	to	unstable	
calibration	parameters	form	day	1	to	day	2	(any	two	consecutive	days).		
	
Functional	Forms	
	
ATM	Volatility	and	Skew	
	
The	calibration	approach	is	based	upon	modeling	the	term	structure	of	ATM	Volatility	and	
ATM	Skew	using	exponential	functions.	It	is	widely	observed	that	any	ATM	Vol	term	
structure	or	skew	term	structure	is	convex	(mostly)	and	rarely	concave.	An	exponential	
function	is	in	general	a	convex	function.		
	
We	try	to	study	this	in	the	form:	
	

?1	×	AB7 − 	?1	×	AB5	
	
The	above	form	allows	us	to	create	both	concave	and	convex	functional	forms	or	curves	
that	are	continuously	differentiable	in	nature.		With	appropriate	scaling	we	can	model	the	
ATM	term	structure	and	skew	based	on	the	above	equation.	This	will	become	our	base	
function	for	calibrating	ATM	Vol	and	Skew	term	structure.		
	
Both	variance	and	skew	can	be	estimated	by	something	like	:	
	

CDE1FADE − CDEGHIJ
AKLM#NO×P − AKLM#NQ×P

AKLM#NO − AKLM#NQ + (CDERℎHET

− CDEGHIJ)(
AKLM#NOKLM#NQ×P − AKLM#NQKLM#NO×P

AKLM#NO − AKLM#NQ )	

	
	
where	WL	and	WR	stand	for	Wing	Left	and	Wing	Right	(direction	as	per	the	curve).	
	



	
Note	that	we	are	scaling	variance	with	exponential	functions	not	the	actual	vols.	This	is	as	
per	the	rationale	that	variance	is	scalable	and	can	be	linearly	interpolated	but	volatility	is	
the	square	root	of	variance	so	it	is	not	easy	to	interpolate.	Also	variances	are	additive.		
The	exponential	function	parameters	atmWL	and	atmWR	control	the	behavior	of	vol	term	
structure.	If	atmWL	is	greater	than	atmWR	then	the	left	side	of	the	curve	is	lifted	up,	while	
the	right	side	decreases.	This	effect	is	necessary	for	keeping	the	term	structure	smooth	and	
preserving	the	shape	of	the	smile	on	both	sides	of	the	ATM	vol.		
	
	
SABR	Tanh	Model	Parameters	
	
Example	:		

atmShort									20%	
atm1Year									24%	
atmLongTerm	25%	
atmWL													1.00	
atmWR													1.02	

	
In	the	example	above	these	5	points	are	mentioned	in	the	same	order.	The	two	wings	are	
basically	the	weights	to	stretch	the	ATM	term	structure	on	either	end.	As	an	input	the	
exponential	function	doesn't	take	the	volatilities	but	variances	since	variances	can	be	
linearly	interpolated.		
	
And	similarly	for	skew	exactly	the	same	logic	is	applied	for	skew	parameters.	

1. 	Short	term	skew	
2. 	1	Year	skew		
3. 	Longest	term	skew	

	
The	ATM	Vol	term	structure	generated	by	the	functional	form	will	match	the	surface's	ATM	
Vols	approximately.	The	skew	term	structure	similarly	calculated	from	the	functional	form	
will	match	the	skew	calculated	from	the	surface.		
	
Skew	Params	&	Values		
Example	:	

skewShort									-21%	
skew1year									-14%	
skewLongTerm	-10%	
skewWL															1.00	
skewWR														1.02	

	
All	this	generates	the	skew	and	atm	vols	only	(not	the	surface).	
	
Kurtosis	Functional	Form	
	
Lastly	kurtosis	can	be	manipulated	using	a	simple	growth	rate	function.	In	the	below	
equation	,	K	equals	kurtosis	



	
. = VRℎHET + VGHIJ − VRℎHET × 1 − AKWXYZM[×P 	

	
Skew	is	asymmetric.	When	skew	increases	the	left	side	shifts	up	and	the	right	side	shifts	
down.	When	skew	decrease	similarly	the	left	side	shifts	down,	and	the	right	side	shifts	up.	
Kurtosis	on	the	other	hand	provides	a	symmetric	control	over	the	wings	of	a	surface.	
Kurtosis	basically	shifts	the	wings	of	the	curve	in	a	symetric	way.		
	
Correlation	Functional	Form	
	

\HEEAG = 	
1

3× 1 + V]ETHR^R×DT_CHG RVA?5

	

	
	
It	uses	a	standard	function	similar	to	 7

7`B
	

	
	
It	basically	decreases	to	0	as	x	approaches	large	values.	We	take	the	square	root	of	this	
function	to	make	sure	that	value	of	x	is	always	positive.	The	x	term	in	our	case	is		
	

V]ETHR^R×DT_CHG

RVA?5 	

	
This	whole	expression	is	scaled		 7

a
	for	better	adjustment.		

	
We	see	that	this	is	infact	true	for	our	functional	form,	from	
	
Kurtosis	=	High,	implies	Correlation	=	Low.		
Kurtosis	=	Low,	implies		Correlation	=	High	
	
The	value	x	is	directly	proportional	to	kurtosis.	So	when	x	is	high	we	have	low	correlation	or	
in	other	words	high	kurtosis	=	low	correlation	and	vice	versa.		
Similar	logic	applies	to	skew.	When	skew	is	higher	it	means	OTM	options	are	priced	higher	
and	might	result	in	volatility	increasing	even	for	a	slight	fall	in	the	market.	So	Spot	
movement	is	very	much	correlated	with	volatility	when	skew	is	high.		
	
Sabr	Tanh	Parameters	(Flattening):	
	

strikeUp							120%	
strikeDown		80%	

	
Two	extra	params	for	control	are	strikeDn	and	strikeUp.	These	are	the	two	strike	limits	
beyond	which	the	curvature	effect	is	replaced	by	a	flattening	or	flattening	which	occur	
beyond	the	designated	strikes.	
	



	
Volatility	Calculation	
	
As	discussed	previously,	the	term	in	square	brackets	is	modified	with	the	tanh	function.	
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The	limits	of	tanh	are	between	-1	and	+1,	and	since	it	is	symmetric	it	is	very	much	suitable	
for	the	volatility	surface	modeling.}	After	building	the	ATM	and	skew	term	structure	the	
other	strikes	are	weighted	based	on	moneyness.	The	function	below	builds	the	surface.		
Notation:		Moneyness	is	calculated	with	respect	to	spot.		
	

b = GHJ

RTE^VA
cHE?DEd

DT_CHG× TAIHE
	

	
So	we	basically	scale	moneyness	with	the	tanh	function.		
	

b_^I = GHJ
(RTE^VA/I)

DT_CHG× TAIHE
	

	

b_Db = GHJ
(RTE^VAef)

DT_CHG× TAIHE
	

	
	
Just	a	minor	check	if	strike	is	very	near	to	ATM		:	

If	Abs(x)	<	0.0000000001	Then		
				sabrVol2	=	atmvol		
				Exit	Function		
	End	If	

	
The	tanh	function	is	used	to	extend	the	curve	between	the	ATM	and	the	end	points.	The	
end	point	on	one	end	is	StrikeDn	and	for	the	other	end	is	StrikeUp.	It's	basically	a	sort	of	
trignometric	interpolation	between	two	moneyness	levels.	
	
1.	The	ATM	and	the	Upward	extremum	on	one	side	
2.	The	ATM	and	the	Downward	extremum	on	other	side	
	
If	(x	>	0)	Then	
				x	=	xmax	*	tanh(x	/	xmax)	
Else	



				x	=	xmin	*	tanh(x	/	xmin)	
End	If							
	
Z	=	-volvol	*	x	
	
asinh	=	(Sqr((1	-	2	*	corr	*	Z	+	Z	*	Z)	-	corr	+	Z))	/	(1	-	corr)	
	
Final	Vol	=	atmvol	*	Z	/	asinh		
	
	
Advantages	over	other	models		
	

1. 	Direct	input	of	ATM	Vol	points	as	parameters	
2. 	Direct	input	of	skew	points	as	parameters		

	
Since	the	functional	form	of	the	volatility	as	a	whole	is	continuous	function	it	is	
differentiable	everywhere.	Hence	we	can	always	get	local	volatility	for	any	of	the	spot	and	
time	points.	Second	derivative	problem	never	happens	because	of	this	continuously	
differentiable	feature.		
	
	
Optimization	
	
We	use	a	form	of	the	Downhill	Simplex	Method	or	Nelder-Mead	(available	as	the	R	function	
optim).	This	can	also	be	coded	in	other	languages.	In	the	excel	solver	we	can	specify	
constraints	using	variable	conditions.	Here	the	function	which	is	specified	as	parameter	
applies	the	constraints.		
	
For	instance	if	I	don't	want	ATM	vol	to	go	above	0.5,	I	will	return	a	residual	value	of	1000	or	
any	other	large	number.	Thus,	the	optimization	function	that	is	calling	my	function	will	
understand	that	ATM	vol	should	not	go	above	0.5	(or	50	percent).	It	basically	minimizes	the	
function	by	assuming	a	simplex	(or	N	vertices	polygon).		
	
It	is	the	shape	by	reflection,	expansion,	contraction	and	reduction	operations	on	the	
geometrical	figure.	This	results	in	a	perfect	optimization	in	few	steps.	One	of	the	problems	
with	the	above	algorithm	was	that	it	used	to	stop	at	local	minima	or	local	maxima.	Here	we	
are	only	concerned	with	local	minima.	This	is	prevented	by	using	a	technique	called	as	
simulated	annealing	which	uses	random	shocks	in	passed	parameters	few	times	to	get	
better	optimization.		
	
	


