
XML::Comma Guide

Table of Contents
Introduction...1

Installation...2
Dependencies...2
Configuration Variables...3
Using the SimpleC Parser..3

Documents and DocumentDefinitions...4
 A Simple Doc and Def..4
 Basic Manipulation: new(), element(), set() and get()..4
 More Complex Structures: Nested Elements..5
 Plural Elements...6
Methods...8
Do What I Mean: Shortcut Syntax...9
Nested Element Helper Methods: elements_group_get() and Friends..11
Whitespace: Ignored and Trimmed..12
XML Escape/Unescape..13
Flexible and Automatic Escape/Unescape...14
Automatic Content: <default>...15
Storing Dynamic Information in Defs: pnotes...16

Storage and Retrieval...18
The Store Definition..18
Two Methods: store() and retrieve()..18
Where Are the Files?...19
Multiple Users and Processes: Permissions and Locking..20
Iterating Over Stored Docs..21
Location Chains...22

Validation, Macros and Hooks..25
Document Structure: Required Elements and validate()...25
Element Content: Macros and validate_content()..26
More Flexibility: Perl Hooks...27
Writing New Macros..29
#include: Defs From Components...30

Indexing...32
A User Index Definition...32
Querying the Index: Iterators...33
Plural Items in Indexes...36
Complex Collection Selectors...37
Full Text Search...37
Using an Iterator Over and Over: iterator_refresh()..40
Fetching the Record's Doc: read_doc() and retrieve_doc()...40
Fetching One Record: single() and Company..41
Getting a Total Rather Than an Iterator: count()...42
Using SQL Aggregates: aggregate (function => ...)..42
Actions at Index Time: index_hook...42

XML::Comma Guide

i

Table of Contents
Indexing

Defining Methods for an Index..43
More Configuration, More SQL..43

Configuring Fields...44
Configuring Collections..45
The fields=> Argument...46

Changes: Automatic Updating of Database Structure...46
Clean and Rebuild..46

Storage in More Detail: Hooks, Output Filters and Location Modules...49
Hooks: pre_store_hook, post_store_hook, erase_hook...49
More on Location Chains...49

Standard _dir Modules..49
Standard _file Modules...50

Index_Only Storage...51
Output Filters...51
Writing New Output and Location Modules...53

Blob Elements..54

Grouping and Sorting Elements..56
Prettifying: group_elements()..56
Sorting: sort_elements()...56

Error Handling and Logging...58

Network Transfer..59
 Client Methods..59
 Server <Location /util/transfer> Configuration..60
 Access Control and SSL Encryption...60

Reference: Defs..61

Reference: Hooks..65

Reference: Perl API (Methods and Objects)..67

Appendix: Table Structure of Index Databases...71
The index_tables Table..71
 Table Type 1: The Data Table..71
 Table Type 2: The 'many tables' Table...72
 Table Types 3 and 4: Textsearch Index and Defers Tables..72
 Table Type 5: The 'binary table' Table...72

XML::Comma Guide

ii

Introduction
XML::Comma is an information management platform. Comma speeds the development of content−heavy,
networked applications, and was designed to solve some of the problems that make managing extremely large
web sites so expensive, difficult and tedious.

Comma is written mostly in Perl, and its target demographic is the Perl programmer who must build
customized, complex systems that handle very large amounts of dynamic content. Like most software that is
designed to be used by programmers to build other software, Comma is several things at once: a code library,
a design framework, a development methodology and a runtime system all rolled into one. However,
Comma's central philosophy is "play well with others," and the system depends heavily on a number of tools
−− the Apache web server and its mod_perl extensions, the HTML::Mason web development environment,
relational databases, the underlying filesystem and OS utilities −− to implement its functionality and to
provide programmers with a complete, flexible, scalable, and familiar toolkit.

Comma shapes information into "documents," and −− as its (full) name implies −− uses XML to structure
those documents. XML, like Perl, is a powerful and standard tool for organizing text. But XML, again like
Perl, doesn't do much of anything by itself. Comma defines a number of discrete "processes" in the
"life−cycle" of a document and provides a framework that abstracts basic activities common to those process.
These frameworks include structuring and validation; long−term storage; programmatic manipulation; and
indexing for fast sorting, categorization and retrieval.

This document, the XML::Comma User's Guide, is available in both HTML and PDF form. The PDF is
generated from the HTML by HTMLDOC.

HTML: http://xml−comma.org/guide−filter.html•
PDF: http://xml−comma.org/guide.pdf•

Introduction 1

http://www.easysw.com/htmldoc/software.php
http://xml-comma.org/guide-filter.html
http://xml-comma.org/guide.pdf

Installation

Dependencies

XML::Comma requires that Perl, a number of CPAN modules, and a relational database be installed in order
to function properly. The Perl version must be 5.005 or greater. The basic required CPAN modules (more may
be used by additional parts of Comma) are Proc::ProcessTable, DBI, the DBD:: module that matches your
database and the Digest:: module of your choice. The database can by mySQL or postgreSQL, with support
for other databases available whenever someone asks for it.

Comma installs in the usual make, make test and make install fashion. The tests, however, won't
run until the Comma/Configuration.pm file has been edited to configure a number of standard variables
to values that are appropriate for your system. Comma/Configuration.pm controls the overall system
configuration, and the version that is in the build directory will be copied to the appropriate location on your
machine during the make install operation.

Comma/Configuration.pm contains a package declaration and then a __DATA__ section divider.
Everything after the __DATA__ line is configuration information, in the form of a big list of eval'able
key/value pairs. Each key specifies the name of a configuration variable, and each value is accessible as a
top−level Comma method, for example:

the top of my Configuration.pm looks like this:

package XML::Comma::Configuration;
use base 'XML::Comma::Pkg::ModuleConfiguration'; 1;
__DATA__

comma_root => '/usr/local/comma',
log_file => '/usr/local/comma/log.comma',
document_root => '/usr/local/comma/docs',
sys_directory => '/usr/local/comma/sys',
tmp_directory => '/tmp',

defs_directories =>
 [
 '/allafrica/comma/defs',
 '/usr/local/comma/defs',
 '/usr/local/comma/defs/macros',
 '/usr/local/comma/defs/standard',
 '/usr/local/comma/defs/test'
],

###
###

so, on my system, this assigns '/usr/local/comma' to $str
my $str = XML::Comma−>comma_root();

and, similarly
my $first_defs_directory = XML::Comma−>defs_directories()−>[0];

The Configuration.pm file that comes with the distribution fully specifies all of the possible
configuration variables, and includes reasonable defaults for all those for which reasonable defaults are likely.
Just think of the configuration block as a big hash assignment −− so pretty much any Perl code is, at least
theoretically, allowed.

Installation 2

Configuration Variables

comma_root −− The base for Comma's directory tree. Comma stores information down various
subdirectories under its root, all of which are also independently specifiable.

•

log_file −− The file to which Comma will write its error and warning log messages. This is usually a
file under comma_root.

•

document_root −− This is the default directory below which Comma documents will be found. This
can actually be overridden in each store definition, but you will usually rely on the configuration
default to be the base directory for document storage. The permissions on this directory must be set so
that each user of the system has the read or write access that they will need to retrieve or store
documents.

•

sys_directory −− This directory is available to the Comma system for internal storage of long−term
data. All of Comma's modules that use Inline::C, for example, use this as a build directory.

•

tmp_directory −− This directory is available to the Comma system, and to any Comma code, for
temporary storage. Most folks use /tmp.

•

defs_directories −− This is an anonymous array of directories that contain document definitions and
macros. Each directory must be explicitly listed; Comma does not recurse into subdirectories looking
for definitions. The directories are searched in the order that they occur in this list (which is relevant
only if you are worrying about naming collisions; definition loading happens infrequently enough that
speed is not a concern).

•

defs_from_PARs −− This is a boolean value ("1" or "0" is strongly preferred), that specifies whether
Defs may be loaded from PAR files. Normally "1".

•

defs_extension −− The extension that Comma expects definition files to have. The convention is
.def, which means that the Foo def will be found in a file called Foo.def.

•

macro_extension −− Like defs_extension, only for macros. Normally .macro.•
include_extension −− Like defs_extension, only for includes. The convention is .include.•
parser −− The parser module that Comma will use. The two standard choices are PurePerl and
SimpleC. The PurePerl module is written entirely in Perl, so should work on any system and without
any installation headaches. The SimpleC module is faster, uses Brian Ingerson's really nifty Inline
framework, and like all such things May Not Work For You. See the notes below.

•

hash_module −− Comma generates checksums for documents. These checksums are used internally
by the system, and are also available via the Doc get_hash() method. You can use any module that
adheres to the CPAN "Digest" interface. Digest::MD5 is a good choice.

•

system_db −− Comma needs to know which database you're using, and how to connect to it.
Normally, system_db is specified through one layer of indirection, as a string pointing to another
configuration entry that holds a hashref. There are examples in the distribution file for both MySQL
and Postgres connections.

•

Using the SimpleC Parser

The SimpleC parser module requires that the Inline and Inline::C modules be installed on your system. After
editing Comma.pm to specify SimpleC as the system parser, run make test as root. The test scripts should
attempt to compile SimpleC and cache the results in Comma's tmp directory. If all goes well, the compiled
module will be available to all users of the system. It must be admitted, however, that we have abused the
Inline mechanisms a bit to achieve the dynamic loading that Comma's config methods require. If Inline::C
passes all its tests, but SimpleC doesn't work for you, don't hesitate to let us know.

XML::Comma Guide

Configuration Variables 3

Documents and DocumentDefinitions
An XML::Comma system stores pieces of information as Documents. The structure and basic behaviors of the
Documents in each system are described by DocumentDefinitions. This section introduces Documents and
DocumentDefinitions. We will mostly refer to Documents as Docs and DocumentDefinitions as Defs; this
saves typing and is consistent with the Perl API.

A Simple Doc and Def

Here is a simple sample Doc, showing the beginnings of a structure that could be used to keep track of
information about a registered user of a web site. We'll use this example as we go along, adding features and
providing example pieces of code.

<User>
 <username>kwindla</username>
 <email>kwindla@xymbollab.com</email>
 <full_name>Kwindla Hultman Kramer</full_name>
</User>

That's pretty self−explanatory. The whole thing is XML, with a very simple structure. Here is the
corresponding Def:

<DocumentDefinition>
 <name>User</name>
 <element><name>username</name></element>
 <element><name>email</name></element>
 <element><name>full_name</name></element>
</DocumentDefinition>

Still pretty simple, so far. For your Comma installation to recognize Docs of the User type, it suffices to put
the above Def in a file called User.def somewhere down the defs_directories path. If you're following along
at the keyboard, you can do that, now, and you'll be able to try out the code examples that follow.

Basic Manipulation: new(), element(), set() and get()

The most basic parts of the Comma API are the methods that manipulate the elements of a Doc. Let's write a
little Perl program to make an "empty" User Doc, set its three elements, and then print the result:

use XML::Comma;
my $doc = XML::Comma::Doc−>new (type=>'User');
$doc−>element('username')−>set ('kwindla');
$doc−>element('email')−>set ('kwindla@xymbollab.com');
$doc−>element('full_name')−>set ('Kwindla Hultman Kramer');
print $doc−>to_string();

Running that program should print out something very similar to the sample Doc, above. (The only difference
should be that the three elements are not indented. There's a way to do that, too, but we'll cover the subtleties
of to_string() later.)

What did we do, there? Well, let's take the program line by line.

Documents and DocumentDefinitions 4

The first line tells Perl that we're going to be using the XML::Comma framework. All of the Comma modules
that we'll need −− such as XML::Comma::Doc −− are pulled in by this statement.

The second line creates a new Doc object. The Doc−>new() method takes a parameterized argument type,
specifying which DocumentDefinition we want our Doc to adhere to.

The next three lines set the contents of the three elements in the Doc. The three statements are completely
independent; we could have placed them in any order. We can break these lines up further, to clarify what's
going on. Here is the username line in two separate statements:

my $username_element = $doc−>element('username');
$username_element−>set ('khkramer');

First, the element() method selects for us the element that we're interested in, taking a single argument −− the
name of the element, and returning a reference to an Element object. Then we call that object's set method.
set() takes a single argument, too, a string which will become the content of the Element.

The final line of the little program prints out our Doc. The to_string() method generates a string of XML text
that completely represents the contents of the Doc.

One more basic method call is worth mentioning here: get(). As you might expect, get() is the opposite of
set(). It takes no arguments, and returns the contents of an Element as a string:

my $username = $username_element−>get();

More Complex Structures: Nested Elements

The Doc so far is very simple: it contains three elements, each of which contain some string−ish content. But
we can do better than that, we can introduce elements that, themselves, contain other elements. If we add an
address element to the Doc, it might look like this:

<User>
 <username>kwindla</username>
 <email>kwindla@xymbollab.com</email>
 <full_name>Kwindla Hultman Kramer</full_name>

 <address>
 <street1>922 M Street SE</street1>
 <city>Washington</city>
 <state>DC</state>
 <zip>20003</zip>
 </address>
</User>

Corresponding changes in the Def are necessary, of course:

<DocumentDefinition>
 <name>User</name>
 <element><name>username</name></element>
 <element><name>email</name></element>
 <element><name>full_name</name></element>

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>

XML::Comma Guide

 More Complex Structures: Nested Elements 5

 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 <element><name>country</name></element>
 </nested_element>
</DocumentDefinition>

The new address element is declared as a nested_element. This means that it will serve as a container for
other elements, and will not have content of its own. Comma enforces this distinction between simple and
nested elements −− an element can have string content, or it can serve as a container for other elements, but it
cannot do both.

You might infer from the above that a nested element will not have set() and get() methods, but rather, like a
Doc, will provide an element() method. If so, you infer correctly. To get at the pieces of the address, we can
simply "walk down the tree", using the methods we already know about.

my $address = $doc−>element('address');
my $formatted_address = $address−>element('street1')−>get() . "\n";
if ($address−>element('street2')−>get()) {
 $formatted_address .= $address−>element('street2')−>get() . "\n";
}
$formatted_address .= $address−>element('city') . ',' .
 $address−>element('state') . ' ' .
 $address−>element('zip');

In fact, a Doc is itself a nested element −− all of the methods that are available for manipulating nested
elements are available for Docs, as well. When we talk in more detail about nested elements, we'll often call
the nested element a container, and the elements that it contains sub−elements. Just keep in mind that when
we describe nested element operations it doesn't matter whether the container is a Doc or a nested element. In
a similar vein, elements can be nested as deeply as you want, you just have to declare the nesting in the Def.
(And there's even a way to specify arbritrarily deep recursive nesting, but that's best covered in another
section entirely.)

Plural Elements

What if we want to store more than one address. We might, like Amazon, keep a number of shipping
addresses on file for each user. To do so, we add a line to the Def, declaring that the address element is plural.

<DocumentDefinition>
 <name>User</name>
 <element><name>username</name></element>
 <element><name>email</name></element>
 <element><name>full_name</name></element>

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>
 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 <element><name>country</name></element>
 </nested_element>

 <plural>'address'</plural>

XML::Comma Guide

 Plural Elements 6

</DocumentDefinition>

Note the quotes around address, in the new line. The contents of the plural specifier are evaluated as a Perl
expression when the Def is loaded into the system, and the return value of that expression must be a list of
elements that the system will allow to be plural.

We gain a lot of flexibility here, by treating a piece of a Def as a bit of Perl code. The price for this flexibility
is a little bit of added complexity: the contents of the plural tag must create a valid Perl list. In this case, that
means putting quotes around bareword address. Many other parts of Comma use this same strategy of
embedding Perl code into DocumentDefinitions, and we'll see much more sophisticated examples shortly.

The element() method continues to work as it always has. If you re−run the earlier code fragments with the
new Def in place, the results will be exactly the same. But our understanding of what element() is doing
should change a tiny bit: the method doesn't fetch the only matching element for us, it fetches the first one.
And, because elements don't exist in a Doc until we manipulate them, element() must create a new element
for us if need be.

For plural elements, we obviously need some more methods. We need a way to fetch elements other than the
first one, a way to add a new element, and a way to delete elements that we don't need.

add a new address
my $address2 = $doc−>add_element ('address');
$address2−>element('street1')−>set ('PO Box 0000');
$address2−>element('city')−>set ('Anyplace');
$address2−>element('state')−>set ('ZZ');
add another new address
my $address3 = $doc−>add_element ('address');
change my mind, delete that element
$doc−>delete_element ($address3);
get a list of address elements
@addresses = $doc−>elements ('address');

The add_element() method takes a single argument, the name of the element to add. It creates a new element
of the requested kind, appends that element to the container, and returns the newly−created element. To ask a
container to add an element that is not plural, if there is already an element of that kind present, is an error.
Remember that element() auto−creates elements as required, so it is never necessary to call add_element()
for a non−plural element.

The delete_element() method also takes a single argument, but is a bit more complicated. It will accept an
element name as string argument, in which case it deletes the last element of that kind. It will also accept an
element object, in which case it will delete that specific element. The method returns true if it deletes
anything, false if it does not.

The elements() method accepts a list of element names and returns a list of the elements of those types, in the
order that they exist in the container. (In the above example, we only asked for address elements, but we
could have asked for username and address elements, or username and full_name and address elements...)

Actually, the return value of elements() is a little trickier than the description above would suggest. In a list
context, the method returns an array. But in a scalar context, it returns a reference to an array. This
context−awareness makes it possible to write code like:

quick walk down the tree
my $last_street = $doc−>elements('address')−>[−1]−>element('street')−>get();

XML::Comma Guide

 Plural Elements 7

This is usually not a problem; most of the time, things just work out as you would expect them to. If you
assign the return value to an array, you get an array. If you dereference with a subscript, you get an element of
the list. But there is one very important case that does not work as you would expect. You can not do the
following!!!

WRONG way to do something if we've got address elements
if ($doc−>elements('address')) {...}

The above if statement will always be true, because what if sees is the reference. Instead, you must use
constructions like the following for conditional elements−ing:

do something if we've got address elements
if (@{$doc−>elements('address')}) {...}

Methods

An element holds a piece of information. A method generates a piece of information each time it is called. A
document definition may supplement its elements, which hold static data, with methods, which return
dynamic data.

Suppose we want to provide a method that will display a user's email address modified in such a way as to
make things more difficult for the address−collecting web crawlers often used to build spam databases. Here
is a method definition that will fetch the contents of the email element, replace the at−sign and periods with
text, and return the result:

<method>
 <name>email_anti_spammed</name>
 <code>
 <![CDATA[
 sub {
 my $self = shift();
 my $email = $self−>element('email')−>get();
 $email =~ s/\@/ (AT) /;
 $email =~ s/\./ (DOT) /g;
 return $email;
 }
]]>
 </code>
</method>

A method is expected to have name and code elements. The name is the name by which the method will be
called. The code element should be text that, when eval'ed, returns a reference to an anonymous subroutine. It
is this subroutine that will be called when the method is invoked.

Not too surprisingly, the method() routine calls a method. The email_anti_spammed method could be used as
follows:

set email
$doc−>element('email')−>set ('kwindla@allafrica.com');
get munged email: kwindla (AT) allafrica (DOT) com
my $munged = $doc−>method('email_anti_spammed');

Methods are often most useful at the top level of a document; they function both as bits of reusable code and
as programmatic short−cuts. But methods can be defined as "part" of any element −− not just the top−level

XML::Comma Guide

Methods 8

Doc. Here is a new definition for the address element that includes a method to generate a formatted block of
text suitable for printing on an envelope (some of the code inside this method will be familiar from an earlier
example):

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>
 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 <element><name>country</name></element>

 <method>
 <name>formatted</name>
 <code>
 <!CDATA[
 # returns a block−formatted address.
 # takes one optional arg indicating whether the country field
 # should be included: print_country => 1
 sub {
 my ($self, %args) = @_;
 my $formatted_address = $self−>element('street1')−>get() . "\n";
 if ($self−>element('street2')−>get()) {
 $formatted_address .= $self−>element('street2')−>get() . "\n";
 }
 $formatted_address .= $self−>element('city') . ',' .
 $self−>element('state') . ' ' .
 $self−>element('zip');
 if ($args{print_country}) {
 $formatted_address .= ' ' . $self−>element('country');
 }
 return "$formatted_address\n";
 }
]]>
 </code>
 </method>
 </nested_element>

The formatted example demonstrates that methods may make use of arguments. The first argument to
method() is the name of the method to be invoked; any arguments after that are passed to the invokee. Here is
example usage of the formatted method:

use a hypothetical &envelope_print sub to generate text on a mailing evelope
envelope_print ($doc−>element('full_name')−>get() . "\n");
envelope_print ($doc−>element('address')−>method('formatted', print_country=>1));

Do What I Mean: Shortcut Syntax

The element() syntax is quite verbose. Comma provides a more concise syntax that reduces the length and
unwieldiness of common method calls. This shortcut syntax has a "Do What I Mean" design, which, of
course, means that it sometimes doesn't do what you meant.

Shortcuts work via Perl's method AUTOLOAD framework. Any Doc or nested element automatically
recognizes Perl methods that have the same name as their defined methods and sub−elements. Because our
User Def defines username, email, full_name, address and email_anti_spammed elements and methods, all
of the following Perl method calls are allowed:

XML::Comma Guide

Do What I Mean: Shortcut Syntax 9

top−level User 'shortcut' methods
$doc−>username();
$doc−>email();
$doc−>full_name();
$doc−>address();
$doc−>email_anti_spammed();

What a shortcut call does depends on what the underlying object referenced is. In the simplest, most useful,
and most common case −− here represented by username, email and full_name −− the shortcut fetches the
content from the element with the same name as the shortcut.

get username with less typing
my $username = $doc−>username();
which is the same thing as:
my $username = $doc−>element('username')−>get();

If the shortcut is called with an argument, then a set() is performed rather than a get().

set the username
$doc−>username ('kwindla');

In the case of a nested element such as address, on the other hand, a get() would make no sense. In the case of
a singular, nested element, the shortcut call returns the element. In the case of address element, which is both
nested and plural, the shortcut call returns a list or reference to a list of the address elements.

'address' shortcut
my $first_address = $doc−>address()−>[0];
which is the same thing as:
my $first_address = $doc−>element('address')−>[0];

For a Comma method, such as email_anti_spammed, the shortcut calls the method. So
$doc−>email_anti_spammed() becomes $doc−>method('email_anti_spammed'). It is possible for a
method and an element to have the same name; in this case, the shortcut calls the method rather than accessing
the element. Comma methods shadow elements of the same name in the context of shortcut calls.

A table of shortcuts and their not−short equivalents is probably the easiest way to describe all of the seven
possible ways a shortcut can be resolved. Here then, are the many faces of $x−>foo ([@args]).

$x−>method('foo', @args) If there is a method named foo

$x−>element('foo') For singular, nested foo

$x−>elements('foo') For plural, nested foo

$x−>element('foo')−>get()
For singular, non−nested foo called with no
arguments

$x−>elements('foo')−>set ($args[0])
For singular, non−nested foo called with
arguments

$x−>elements_group_get('foo')
For plural, non−nested foo called with no
arguments

$x−>elements_group_add('foo', @args)
For plural, non−nested foo called with
arguments

XML::Comma Guide

Do What I Mean: Shortcut Syntax 10

We've used examples from the top level of the User Doc, but short−cut methods are applicable to any nested
element context. (Indeed, shortcuts are most useful in terms of keystrokes saved when used to shorten
multi−level traversals.) Here is a line of code to grab the zip−code of the first stored address in a User Doc:

a shortcut version of $doc−>elements('address')−>[0]−>element('zip')−>get()
$doc−>address()−>[0]−>zip();

Nested Element Helper Methods: elements_group_get() and
Friends

Shortcuts are one kind of convenience method; they're not strictly necessary but do save typing and make
code easier to read. Another set of convenience methods are supported by nested elements: the group helpers.
These methods make it possible to manipulate instances of a non−nested, plural element as a single group. To
demonstrate, we first need to add a simple, plural element to our User Def. In an even more contrived
attempt to come up with an example than normal, let's allow a user to be known by a number of nicknames.

<element><name>nickname</name></element>
<plural>'nickname'</plural>

A Doc that includes several nickname elements might look like this:

<User>
<username>kwindla</username>
<email>kwindla@xymbollab.com</email>
<full_name>Kwindla Hultman Kramer</full_name>
<nickname>Junior</nickname>
<nickname>khkramer</nickname>
<nickname>smooth_operator</nickname>
</User>

To add one or more new nickname elements to this Doc, we can use one of the group helper methods:
elements_group_add(). The first argument to elements_group_add() is the name of the element(s) we'll be
adding; the remaining arguments specify the content for each new element.

add two nicknames
$doc−>elements_group_add ('nickname', 'Sneezy', 'Forgetful');

note: the above statement is equivalent to the following two lines of code:
$doc−>add_element('nickname')−>set ('Sneezy');
$doc−>add_element('nickname')−>set ('Forgetful');

The opposite function, deleting particular elements from a group, is handled by the elements_group_delete()
method. Again, the first argument supplies a name and the remainder of the arguments specify content strings.
If the content of an element matches one of the supplied strings, that element will be deleted. (Any strings that
are not matched will be ignored.) If elements_group_delete is only given the first, name, argument, then all
elements in the group are deleted. This provides a convenient idiom for clearing and re−setting an elements
group.

remove the nicknames we just added (wrong movie)
$doc−>elements_group_delete ('nickname', 'Sneezy', 'Forgetful');

remove all the nicknames and replace them with a list of nicknames we
get back from a couple of subroutine calls
my @new_nicknames = Television::Stooges::nicknames();

XML::Comma Guide

Nested Element Helper Methods: elements_group_get() and Friends 11

push @new_nicknames, Usenet::Rec::Humor::Stooges::FanFiction::nicknames();
$doc−>elements_group_delete ('nickname');
$doc−>elements_group_add_uniq ('nickname', @new_nicknames);

To query a group for the presence of a particular piece of content, use the elements_group_lists() method.
This method expects two arguments: name and content.

check that we really removed the Snow White stuff
print "no more dwarves"
 if ! $doc−>elements_group_lists('nickname', 'Sneezy') and
 ! $doc−>elements_group_lists('nickname', 'Forgetful');

To slurp the contents of the group's elements into a list, use elements_group_get(). As is the case with most
of the nested element "plural" methods, elements_group_get() returns either an array in a list context and an
array reference in a scalar context.

get all of the nicknames
my @nicknames = $doc−>elements_group_get ('nicknames');
get the last nickname
my $last_nickname = $doc−>elements_group_get('nicknames')−>[−1];

Finally, elements_group_add_uniq() works like elements_group_add() except that it ignores duplicates. If
we always use elements_group_add_uniq() to add to the nicknames list we will never list a nickname twice.

add a new nickname
$doc−>elements_group_add_uniq ('Bashful');
add several more nicknames, skipping 'Bashful' because it's already present
$doc−>elements_group_add_uniq ('Dopey', 'Bashful', 'Doc');

Whitespace: Ignored and Trimmed

XML−based systems must define how they treat whitespace. HTML, for example, treats all occurrences of
whitespace as equivalent. With the exception of content inside a pre tag, which is preserved as formatted,
there is no difference between a single space and a boatload of carriage returns. (With the exception, of
course, of pre tags, which preserve whitespace exactly as supplied.)

Comma treats whitespace surrounding its tags as non−meaningful, stripping it all out. The following Docs are
exactly the same:

<!−− Two equivalent Docs −−>

<User>
<username> kwindla </username>
<full_name> Kwindla Hultman Kramer </full_name>
</User>

<User><username>kwindla</username><full_name>Kwindla Hultman Kramer</full_name></User>

Comma's stripping of tag−adjacent whitespace has a very important corrolary: whitespace is trimmed from
the beginning and end of all element content. So the two set() statements below are equivalent, and the
string comparison will always be false:

set the username
$doc−>element('username')−>set ('kwindla');
set the username to the same thing −− whitespace is "trimmed"

XML::Comma Guide

Whitespace: Ignored and Trimmed 12

$doc−>element('username')−>set (' kwindla ');

because the whitespace is gone, this can *never* be true
my $matched = $doc−>element('username')−>get eq ' kwindla ';

Of course, the auto−trimming only applies to tags defined in Comma document definitions. It is often
convenient to embed XML−marked−up text in a Comma element as "flat" content −− an element that stores
an HTML snippet, for example, will include XML tags that have no "meaning" to Comma. Element content is
always preserved verbatim (after whitespace is trimmed from the very beginning and very end) by the system;
any XML−like strings inside element content are treated exactly like all other text.

XML Escape/Unescape

Every Comma Doc is a syntactically−legal XML document. All tags must be properly balanced and nested,
and bare ampersands, left brackets and right brackets must be properly escaped. Elements that contain
XML−like tags or markup characters as part of their content will need to take special action to ensure that
proper formatting, escaping or CDATA wrapping happens.

Let's add a bio element to our User Def, and discuss some of the issues involved in storing HTML as element
content.

<!−− new 'bio' element: holds a chunk of HTML text −−>
<element><name>bio</name></element>

<User>
<username> kwindla </username>
<full_name> Kwindla Hultman Kramer </full_name>
</User>

<bio> Kwin is a programmer who likes Perl
and 6812
assembly language. </bio>

The above Doc is perfectly fine. Because the two a tags are balanced, the parser has no problem reading in the
Doc. After parsing is finished the content of the bio element is treated just like any other "flat" piece of
content.

We will run into problems, however, if we're not extremely careful about the HTML we try to store in the bio
element. For example, HTML includes a number of "empty" tags that are usually used in a non−balanced
fashion −− img and br, for example. Unless we force the use of XHTML syntax, which mandates
XML−compatible tag usage, we'll need to either escape all mark−up characters or wrap content in a CDATA
section.

The utility methods XML_basic_escape and XML_basic_unescape handle simple escaping and unescaping
of markup characters.

use Comma::Util qw (XML_basic_escape XML_basic_unescape);
escape a string
$escaped = XML_basic_escape ('');
$unescaped = XML_basic_unescape ($escaped);

The set() and get() methods provide a means to escape and unescape strings during get and set operations. If
set() is called with additional arguments following the content arg, they are interpreted as paremeters that

XML::Comma Guide

XML Escape/Unescape 13

effect how the set is performed. The argument escape=>1 forces the content string to be escaped before other
pieces of the set routine −− validation, etc. −− go to work. Similarly, calling get() with the parameterized arg
unescape=>1 unescapes the content string before it is returned.

safe set()
$doc−>element('bio')−>set ($html_stuff, escape=>1);

get() bio content in a string that we can incorporate directly into
a web page
$doc−>element('bio')−>get (unescape=>1);

Our other option, as mentioned above, is to "wrap" the bio element's content in an XML CDATA section. The
CDATA envelope forces an XML parser to treat the characters inside it as plain text. Comma allows an
element to be flagged as CDATA−fied, meaning that on output the entire contents will be wrapped in a
CDATA section. Comma treats this CDATA facility as high−impact and coarse−grained. As a result the
declaration is a one−way street: once a CDATA element, always a CDATA element. The wrap_cdata()
method flips the switch, so to speak.

configure the bio element so that it always CDATA−wraps its content
$doc−>element('bio')−>wrap_cdata();
now we can set() with impunity
$doc−>set ($messy_html);

The to_string() method on the CDATA−set element will produce output that looks something like this:

<bio><![CDATA[Kwin is a programmer who likes Perl
and 6812
assembly language.]]></bio>

Flexible and Automatic Escape/Unescape

Escaping and unescaping element content is common enough to warrant specific configurability for each
Element in a Def of:

The code that performs the escape operation1.
The code that performs the unescape operation2.
Whether to automatically escape element content on a set()3.
Whether to automatically unescape element content on a get()4.

Here is a (silly) example of a custom escape/unescape pair as part of an Element's definition:

<element>
 <name>Xs_are_dangerous</name>
 <escapes>
 <escape_code>
 sub { my $str=shift; $str =~ s:X:−−x−−:g; return $str; }
 </escape_code>
 <unescape_code>
 sub { my $str=shift; $str =~ s:−−x−−:X:g; return $str; }
 </unescape_code>
 <auto>1</auto>
 </escapes>
</element>

XML::Comma Guide

Flexible and Automatic Escape/Unescape 14

Within the escapes section, escape_code specifies some code that performs the ecape, and unescape_code
specifies some code that performs the unescape. They default, respectively, to:

 \&XML::Comma::Util::XML_basic_escape
 \&XML::Comma::Util::XML_basic_unescape

The auto element controls behaviors 3 and 4, from the list above. The content of auto is eval'ed at Def load
time, and if auto contains a scalar value, that value sets the default for both escaping and unescaping. If auto
contains a listref, the first value in the list controls escaping, and the second unescaping. auto defaults to "0".

In the example above, auto is "1", so content is silently escaped by the element's set() method and silently
unescaped by its get() method. Of course, explicitly passing escape=>0 to set() or unescape=>0 to get()
overrides this behavior:

if $el is an Xs_are_dangerous element...

set $el content to "TE−−x−− ME−−x−−"
$el−>set ("TEX MEX");

get back our string TEX MEX
$str = $el−>get();

get back the literal "TE−−x−− ME−−x−−" stored in $el
$str = $el−>get (unescape => 0);

set $el content to literal "TEX MEX" −− no escape
$el−>set ("TEX MEX", escape => 0);

Three more element Def examples:

<element>
 <name>all_basic_escaped</name>
 <escapes><auto>1</auto></escapes>
</element>

<element>
 <name>esc_basic_escaped</name>
 <escapes><auto>[1,0]</auto></escapes>
</element>

<element>
 <name>unesc_basic_escaped</name>
 <escapes><auto>[0,1]</auto></escapes>
</element>

Automatic Content: <default>

It is often useful to define default content for a class of elements, content that get() will return for any instance
of an element that doesn't have content of its own. We can amend the definition of the bio element (defined in
the previous section) to provide a standard "no information available" string if a User Doc doesn't include a
bio.

<element>
 <name>bio</name>
 <default>No bio information available.</default>
</element>

XML::Comma Guide

Automatic Content: <default> 15

set() bio information
$doc−>element('bio')−>set ('Kwindla is a programmer');

get() will return our new bio −− this prints out 'Kwindla is a programmer';
print $doc−>element('bio')−>get();

"clear" bio content by passing set() an undef argument
$doc−>element('bio')−>set();

now get() will return our default string −− 'No bio information available'
print $doc−>element('bio')−>get();

As the above code demonstrates, calling set() with an undefined value as its content argument (which passing
no arguments does implicitly) "clears" the content of an element, and any subsequent get() calls will again
return the default string. Note that only an undef argument will clear an element's content; in particular, an
empty string is perfectly valid as content and a get() on an element with an empty string as its content will
happily return that empty string.

It is sometimes important to differentiate between an element that doesn't have any content and an element
that has the same content as its Def's default string. The get_without_default() method returns an element's
content exactly as is, without falling back to any default value that may be defined. Unlike get(), which
returns an empty string if there is neither element content nor Def default, get_without_default() returns
undef if an element has no content at all.

Storing Dynamic Information in Defs: pnotes

Document definitions are static constructs. However it can be useful to tie some dynamic bits of information
−− status or state flags, simple lookup tables and the like −− to a def.

To enable a Def to "hold" some long−lived bits of dynamic information, each def exposes a unique pnotes
hash, available to any piece of code in the system. (Comma borrowed the idea for, and the name of, the
pnotes hash from Apache.)

a bit of pnotes manipulation

my $def = XML::Comma::Def−>read (name=>'some_docdef');
$def−>def_pnotes()−>{'foo'} = 'bar';

prints out 'Foo from def: bar'
print "Foo from def: " . $def−>def_pnotes()−>{'foo'} . "\n";

my $doc = XML::Comma::Doc−>new (type => 'some_docdef');

prints out 'Foo from doc: bar'
print "Foo from doc: " . $doc−>def_pnotes()−>{'foo'} . "\n";

prints out 'Foo from pathname: bar'
print "Foo from pathname: " . XML::Comma−>pnotes('some_docdef')−>{'foo'} . "\n";

and every element down a def's tree has its own pnotes, too
XML::Comma−>pnotes('some_docdef:nested_element:another_element')−>{'test'} = 'Ok';
print "Ok down longer pathname: " . XML::Comma−>pnotes('some_docdef:nested_element:another_element')−>{'test'} . "\n";

There are three new methods here. Each element exposes a def_pnotes() method, which returns a reference to
that element's def's pnotes hash. Each def also exposes a def_pnotes() method, which returns a reference to its
own pnotes hash. The two methods are "different but the same" −− for convenience, you can call

XML::Comma Guide

Storing Dynamic Information in Defs: pnotes 16

def_pnotes() on an element or on that element's def and get back the same hash reference.

The third new method is the system call XML::Comma−>pnotes(), which takes a pathname and returns that
def path's pnotes hash.

XML::Comma Guide

Storing Dynamic Information in Defs: pnotes 17

Storage and Retrieval
Manipulating Docs in memory is only a small part of the story. We need a way to store Docs in permanent
collections, a way to retrieve these permanently stored Docs, and a way to manipulate the collections
themselves.

The Store Definition

Let's introduce a new section to the User Def: store.

<DocumentDefinition>
 <name>User</name>
 <element><name>username</name></element>
 <element><name>email</name></element>
 <element><name>full_name</name></element>

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>
 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 </nested_element>

 <plural>'address'</plural>

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_file</location>
 </store>
</DocumentDefinition>

This is the simplest possible store specification: we supply a name, a base directory and a location.

The name element specifies how we'll refer to this particular store. As with elements, we can specify more
than one store, so we need names to differentiate one from 'nother. We've called this particular store main.

The base element supplies a directory, underneath the document root, where we're going to put the Docs that
we're storing. For this store, since the base is comma_guide, all of the storage will take place in
<document_root>/comma_guide/.

The location element specifies how Docs will be stored within the base context. In this case we're storing
Docs in a series of sequentially−numbered files.

Two Methods: store() and retrieve()

With this definition of our main store in place, we're ready to store and retrieve User documents.

make a new Doc, so we have something to store.
my $doc = XML::Comma::Doc−>new (type=>'User');
$doc−>element('username')−>set ('kwindla');
$doc−>element('email')−>set ('kwindla@xymbollab.com');

Storage and Retrieval 18

write this Doc out to the "main" permanent store
my $key = $doc−>store (store => 'main')−>doc_key();
now read the Doc back in, manipulate it, and store it back out to the same place
my $d2 = XML::Comma::Doc−>retrieve ($key);
$d2−>element('full_name')−>set ('Kwindla Hultman Kramer');
$d2−>store();

There are three new methods here −− store(), retrieve(), and doc_key.

The store() method writes a Doc out to permanent storage. A store => <name> argument must be supplied
the first time the method is called on a new Doc, to specify which of the stores in the Def will be used. The
store() method re−returns a reference to the Doc, so that you can chain method calls together easily. The
doc_key method returns a unique, long−term identifier for the stored Doc.

The retrieve() method fetches a Doc out of storage, and expects to be supplied a document key as its
argument.

Where Are the Files?

It's worth looking at the files that store() writes out. If you ran the above bit of code, you should be able to
look in your document root and see a directory named comma_guide. In that directory, there should be a
file named 0001. (And if you ran the code multiple times, also 00020003, etc.) The contents of these files
should look familiar: the text in them was produced by an internal call to to_string(). We can compare the
output from a to_string() call with the contents of a store file, to confirm this:

my $store = XML::Comma::Def−>read(name=>'User')−>get_store('main');
my $doc = XML::Comma::Doc−>retrieve (type => 'User',
 store => 'main',
 id => $store−>first_id());
print out the doc with a to_string()
print "doc retrieved...\n"
print " key: " . $doc−>doc_key() . "\n";
print " from to_string()...\n";
print "−−−−\n";
print $doc−>to_string();
print "−−−−\n";
cat the file that we got the doc from
print " from file: " . $doc−>doc_location() . "\n";
open (FILE, '<'.$doc−>doc_location());
my @lines = <FILE>;
close (FILE);
print "−−−−\n";
print @lines;
print "−−−−\n";

We've snuck several things into the above example.

In the first line we read() the User Def. This is the Def that we've been adding to as we go along in this
chapter, but here we're going to be querying it programmatically, rather than editing it as a text file.
Def−>read() gives us a reference to the Def object, upon which we immediately call get_store() to get a
reference to our main store. We use that to get the id of the first document we stored in main, whatever and
whenever that was. A document id, as you might guess, is one of the parts that makes up a document key.
(The other mandatory parts are a document type and a store name.) As you can see, retrieve() is flexible: it
accepts a single argument and interprets that as a key (as in the previous example); it is also happy to accept
separate, parameterized arguments supplying a type, store name and Doc id, which is what we've done here.

XML::Comma Guide

Where Are the Files? 19

Again, we see the doc_key() method, which returns this Doc's key, and a new method, doc_location(), which
returns the underlying file that this Doc was fetched from. It is worth noting that doc_location() is rarely used
in the course of "normal" Doc manipulation, because Comma handles all of the underlying filesystem tasks
that are part of ordinary storage, retrieval and the like.

There are other "doc_foo()" methods, including doc_store() which returns a reference to the store that was
used to fetch or store the Doc, and doc_id(), which returns the Doc's id. It is an error to call any of the
doc_foo() methods on a newly−created Doc that has not yet been stored.

Multiple Users and Processes: Permissions and Locking

Access permissions are an important part of any multi−use system. XML::Comma uses the underlying
filesystem to provide basic permissions facilities. The store definition may include a file_permissions
element, which sets the rwx permissions on any stored files. Here is our main store with a new line that
makes these files world−readable but writable only by their owner:

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_file</location>
 <file_permissions>644</file_permissions>
 </store>

The 644 specification is suitable for a system in which all User editing is done by processes running as a
single user, but in which many users might need to run processes that need read−access to User information.
It is actually more common for a group of users to need write access to a Doc collection; for that reason the
default value of the file_permissions element −− the value that is used by the system if no specifier is given
−− is 664.

Because Comma depends on the filesystem to manage permissions, you will need to understand how the
filesystem determines and applies permissions information to/for individual files in order to set up
complicated scenarios. Remember that Comma code always runs as part of some particular process, under the
ownership of a specific user.

Permissions restrictions address issues of information ownership and security. File permissions discriminate
among multiple users of a system. An even more fundamental set of problems is posed by the multi−process
nature of the systems on which Comma runs. We must be able to lock Docs so that concurrent processes do
not simultaneously attempt to modify a file.

The retrieve() method automatically acquires a lock on the requested Doc. As long as this lock is held, the
Doc cannot be retrieved again. The store() method automatically unlocks the stored Doc.

Because of the automatic locking, retrieve() is a relatively heavy−weight method. In addition, if retrieve()
cannot immediately acquire its lock, it waits −− re−trying periodically −− until it finally can. The retrieve()
method should therefore be used carefully, with the time that a Doc is held open kept as short as possible. (An
optional argument to retrieve, timeout=><seconds> is also available. With a timeout specified, retrieve()
will throw an error if it is unable to acquire its lock within the given number of seconds.)

The read() method is an alternative to retrieve(), for situations in which a Doc will be read but not modified.
In fact, in most applications, read() is by far the most common access method. Because read() does not need
to acquire a lock, it is somewhat faster than retrieve(). The two methods take the same arguments.

XML::Comma Guide

Multiple Users and Processes: Permissions and Locking 20

There is one other method in the retrieve family: retrieve_no_wait(). This method is exactly like retrieve(),
except that if it fails to immediately acquire a lock it returns undef, rather than blocking. Programmers with
extensive experience designing multi−threaded/concurrent systems will find uses for this method: other
programmers will find abuses. In general, if you can't describe in exact and minute detail why you are using
retrieve_no_wait(), you shouldn't be.

As the necessary complement to retrieve(), store() must unlock objects as they are written out to permanent
storage so that other users of the system will be able to fetch them. After storage, a Doc object becomes
read−only, as if it had been opened with read().

It is possible to store() a Doc without unlocking it (useful, for example, to write out intermediate changes as
part of a series of operations). The keep_open=<true> argument specifies that the lock be retained.
(Conversely, a Doc that has been opened read−only can be locked with the get_lock() or get_lock_no_wait()
methods.)

Finally, the methods erase(), copy() and move() perform the operations that their names suggest:

retrieve and then erase a Doc
my $doc = XML::Comma::Doc−>retrieve ($key_a);
$doc−>erase();
retrieve and the move a Doc
$doc = XML::Comma::Doc−>retrieve ($key_b);
$doc−>move (store=>'other_store');
read and copy a Doc (we're not modifying the original, so it's
okay to read() instead of retrieve()
$doc = XML::Comma::Doc−>read ($key_c);
$doc−>copy (store=>'other_store');

As a side note, copy() and move() accept the same arguments as store(), including keep_open=<true>, and
you should always supply a store=><name> when copying and moving −− the normal use of these methods
is to transfer a Doc from one store to another. (Confusingly, in this normal case, copy() is really just a
synonym for store(); calling store() with a new store=><name> specifier effectively performs a copy. The
only case in which the actual copy() method is uniquely required is the copying of a Doc within the same
store.)

Iterating Over Stored Docs

It is often necessary to process some or all of the Docs in a store. Methods exist to fetch the first and last ids in
a store and, given an id, to fetch the ids before and after it. In one of the examples above we retrieved the first
Doc in the main store. We'll begin with that same code, and then go on to iterate through all of the Docs in
the store.

my $store = XML::Comma::Def−>read(name=>'User')−>get_store('main');
my $doc = XML::Comma::Doc−>retrieve (type => 'User',
 store => 'main',
 id => $store−>first_id());
print "first doc: " . $doc−>doc_key() . "\n";
while (my $id = $store−>next_id($doc−>doc_id())) {
 $doc = XML::Comma::Doc−>retrieve (type => 'User',
 store => 'main',
 id => $id);
 print "next doc: " . $doc−>doc_key() . "\n";
}

XML::Comma Guide

Iterating Over Stored Docs 21

This code uses the store's first_id() and next_id() methods. To iterate in the other direction, we could
substitute last_id() and previous_id().

The prev_ and next_ methods are fine for fetching a few docs, but for sizable loops they are a little clumsy
and a lot slow. An iterator provides a means by which to apply repetitive operations to a set of stored
documents quickly and easily.

basic iterator −− start from the end and work backwards
my $iterator = $store−>iterator();
while (my $doc = $iterator−>prev_read()) {
 print "working on doc: " . $doc−>doc_id() . "\n";
}

with some additional parameters −− start from the beginning and
limit the set to the first 500 docs
$iterator = $store−>iterator (size=>500, pos=>'−');
while (my $doc = $iterator−>next_read()) {
 print "working on doc: " . $doc−>doc_id() . "\n";
}

An iterator is obtained by calling the store's iterator() method. By default, iterator() provides access to all of
the store's documents, starting with the last doc. (This is the default because iterating backwards over
recently−stored docs is a fairly common thing to do.) Two arguments to iterator() modify this default
behavior: store=> limits the size of the iterator's result set, and pos=> specifies whether the iterator is initially
set to point at the end or at the beginning of the set −− '+' specifies the end (and is equivalent to the default of
not specifying a pos), and '−' specifies the beginning. The size=> argument can only be used to pick out the
first or last n documents. There is no way to pull a subset of documents out of the "middle" of a store. When
used with pos=>'−', the size specifier will select documents from the beginning of the store, and when a
pos=> argument is not given (or when pos=>'+' is specified), the size specifier will select documents from the
end of the store.

The basic iterator methods are next_id(), prev_id(), next_read(), prev_read(), next_retrieve(), and
prev_retrieve(). The names are pretty self−explanatory. Each of these methods returns an id or doc, as the
case may be, unless the iterator has passed the beginning or end of its collection, in which case the method
returns undef. The six methods can be called in any combination and in any order. (Criticism−inclined
readers may, at this point, be thinking that "iterator" is a poor name for this class, given that it is possible to
move across the set in any order and backwards and forwards. Those readers are probably correct.)

Four more methods are defined for advanced mucking around with an iterator. These methods should be
wielded with caution, as they are not usually needed and they don't do any error or sanity checking. The
length() method returns the size of the iterator's document set; the index() method gives the position of the
current pointer into that document set; the inc() method moves the pointer a relative amount −− with no
argument inc() adds one to the pointer, given an argument it adds that value to the pointer (−1 is a common
argument); and the set() method sets the pointer to an absolute index value −− so
$iterator−>set($iterator−>length()) would reset an iterator such that the next call to
prev_id() will fetch the last id in the set.

Location Chains

So far, our storage definition for main has used only a single location element. We saw above that specifying
Sequential_file governed the "file" portion of the storage location. To understand how to create more
complex storage patterns, we need to understand how multiple location specifiers can be "chained" together.

XML::Comma Guide

Location Chains 22

A filesystem is a heirarchical store: directories contain files and directories, which contain more files and
directories, which contain more files and directories, ad infinitum. Each time a Doc is stored, Comma uses the
document_root, the base specifier and the location elements in a storage definition to build a "location
chain" that determines where in the filesystem to save the written−out Doc. For our main store, the chain
looks like this:

document root base location

XML::Comma−>document_root() comma_config <location>Sequential_file</location>

There are other location specifiers besides Sequential_file. Some of these are designed to be used in
pairs or groups, so that several location specifiers can be combined as part of a chain. One of these
"intermediate" specifiers is Sequential_dir, which is similar to Sequential_file except that it
determines an intermediate directory in the location chain rather than a final file. Here is our store definition
with a new addition:

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_dir</location>
 <location>Sequential_file</location>
 </store>

The first file stored by this store will be located at:

<document_root>/comma_guide/0001/0001

We've added a directory level to the chain; the first 0001 comes from the Sequential_dir, the second
from the Sequential_file. One effect of this addition is to increase the capacity of the store. We're
limited to 9999 files per directory, so before we could store a maximum of 9999 Docs and now we can store
up to 9999 * 9999, or 99,980,001. And we can add as many Sequential_dirs to the chain as we like,
increasing the number of directories in the resulting storage locations.

Location specifiers often accept arguments that further determine how they behave in the chain.
Sequential_file recognized two arguments, and Sequential_dir recognizes one. Here is another
modified version of our storage definition:

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_dir:max,10</location>
 <location>Sequential_file:max,99,extension,'.xml'</location>
 </store>

Now each of the location specifiers has an arguments list attached. A colon separates the specifier name from
the arguments, and the arguments themselves take the form of a Perl list, which will be turned into a hash of
key/value pairs when the definition is loaded.

The first argument is common to both declarations: max specifies the maximum number of files that will be
allowed in this part of the chain. (When we stated above that we were limited to 9999 files, we were referring
to the default value of the max argument. If we had wanted to square the capacity of the storage without
adding an intermediate directory, we could have simply specified max,99_980_001 as an argument to
Sequential_file. Doing so has a serious drawback, however; finding, creating and deleting files gets

XML::Comma Guide

Location Chains 23

progressively slower as the number of files in a directory climbs.)

Sequential_files second argument, extension, provides an extension to be tacked onto the end of every
Doc's storage file. This can be useful if, for example, other tools for managing or manipulating files will
co−exist with XML::Comma in a given application. With our most recent definition, the first and last files in
the a store would have the following locations:

<document_root>/comma_guide/01/01.xml
<document_root>/comma_guide/10/99.xml

The Storage in More Detail section provides additional information about storage definitions, including
documentation for all of the standard location modules.

XML::Comma Guide

Location Chains 24

Validation, Macros and Hooks
Document Definitions describe and constrain the basic structure of the documents that we can produce. For
example, an attempt to make use of an element that isn't specified in a document's Def generates an error. This
section describes Comma's mechanisms for "validating" the structure of documents and the content of
elements.

Document Structure: Required Elements and validate()

Section Three introduced the plural tag. This tag determines which elements may exist multiple times in the
given container. Another container−level tag is required, which specifies that a container must include at
least one of each of the specified elements. Here is our User Def with a new validity constraint:

<DocumentDefinition>
 <name>User</name>
 <element><name>username</name></element>
 <element><name>email</name></element>
 <element><name>full_name</name></element>

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>
 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 </nested_element>

 <plural>'address'</plural>
 <required>qw(username email full_name)</required>

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_file</location>
 </store>
</DocumentDefinition>

To be "valid," a User Doc must now have content in its username, email and full_name elements. A
document that is not valid cannot be stored −− the storage routines all call the method validate(), which
throws an error if all required elements are not present. The validate() method can also be called directly. It
takes no arguments and returns the emtpy string; it's only function is to throw an error if the Doc doesn't pass
all validity tests. Here are two simple code snippets, for more information see the section on errors and error
handling:

check whether a Doc passes validity tests
eval {
 $doc−>validate();
}; if ($@) {
 print "doc didn't validate: $@\n";
}

the same idea, but during a store()
my $key
eval {
 $key = $doc−>store(store=>'main');

Validation, Macros and Hooks 25

}; if ($@) {
 print "doc couldn't be stored: $@\n";
} else {
 print "doc was stored successfully: $key\n";
}

Our example use of required is not very complicated. As with all things to do with nested elements, required
and validate() are just as applicable deep inside a nested structure as at the very top level. Any nested element
can specify a required list, and can be checked with a call to validate(). More interestingly, calls to
validate() automatically check the validity of all elements underneath the caller, so a Doc−level validity
check walks the entire document tree. This is convenient and it makes good theoretical sense: no element can
be valid that itself contains invalid parts.

Element Content: Macros and validate_content()

A container's validity is a function of the sub−elements that it contains. A simple element's validity is a
function of its contents. A macro defines and limits the type of content that an element may have. Here is our
User Def with macros added to its username and email definitions.

<DocumentDefinition>
 <name>User</name>

 <element>
 <name>username</name>
 <macro>length:min,4,max,20</macro>
 </element>

 <element>
 <name>email</name>
 <macro>email</macro>
 </element>

 <element><name>full_name</name></element>

 <nested_element>
 <name>address</name>
 <element><name>street1</name></element>
 <element><name>street2</name></element>
 <element><name>city</name></element>
 <element><name>state</name></element>
 <element><name>zip</name></element>
 </nested_element>

 <plural>'address'</plural>
 <required>qw(username email full_name)</required>

 <store>
 <name>main</name>
 <base>comma_guide</base>
 <location>Sequential_file</location>
 </store>
</DocumentDefinition>

We can use the validate_content() method to check whether a string can be accepted as an element's content.
The method takes a single argument −− the prospective content −− and throws an error if the content fails to
pass the validity checks. It is not usually necessary to call validate_content() directly, because set() calls the
method at the very beginning of its operation, before doing anything else. Here is a typical bit of

XML::Comma Guide

Element Content: Macros and validate_content() 26

error−checked set() code:

modifying a User doc
eval {
 $doc−>username ($username);
 $doc−>email ($email);
 $doc−>full_name ($full_name);
}; if ($@) {
 handle_content_error ($@);
}

The validate() method is also defined for non−nested elements. It is possible to use the unsafe append()
method to construct invalid element content (and also possible to read invalid Docs out of storage). The
validate() method checks an element's existing content for validity. Just as with nested elements, this method
is called by all of the storage methods, so that an invalid document will not be written out to permanent
storage.

As with storage location specifiers, the macro tag should contain a name followed by an optional argument
list (with a colon in between). Different macros expect different numbers of arguments and different argument
formats. The enum macro, for example, takes a list of strings that will be the only acceptable contents for the
element being defined. Let's add a new subscription element to the User Def, indicating what level of service
a user has paid for. (This time, we won't re−produce the whole Def, just the new element.)

<element>
 <name>subscription</name>
 <macro>enum: 'basic', 'premium', 'lifetime'</macro>
</element>

There are only four possible values for the content of the subscription element: undef, basic, premium, and
lifetime. "Hmm, undef" you say, "I don't see undef in that list? Well, enum always includes undef as an
implicit member of the possible−contents list. The reason for this will be clear after a little reflection: because
Comma treats a content−less element as indistinguishable from an element that is not there at all, undef
must be legal content for all elements. To make an empty element illegal is actually the same operation as to
make it required. If we want every User Doc to include subscription information, we can define the
subscription element to be required:

<element>
 <name>subscription</name>
 <macro>enum: 'basic', 'premium', 'lifetime'</macro>
</element>

<required>'subscription'</required>

More Flexibility: Perl Hooks

The required and macro facilities that we've just seen are actually implemented using a finer−grained, more
flexible tool: the hook. A hook is a piece of Perl code that will, under specific circumstance, be automatically
called by the Comma system. Declaring an element as required actually installs a validate_hook −− the
required tag is just a short−cut, provided because the facility is so important and so commonly used. The
following two pieces of a hypothetical Def are exactly equivalent:

<!−− 1) a required tag specifying two element names−−>
<required>'foo', 'bar'</required>

XML::Comma Guide

More Flexibility: Perl Hooks 27

<!−− 2) the two validate_hooks that are actually installed
when the Def is parsed, one for 'foo' and one for 'bar' −−>

<validate_hook>
<![CDATA[
 sub {
 my $self = shift();
 my $req_el = \$self−>elements('foo')−>[0];
 die "required element 'foo' not found in " . $self−>tag_up_path() . "\n" if
 (! $req_el) or
 ((! $req_el−>def()−>is_nested()) and (! $req_el−>get()));
 }
]]>
</validate_hook>

<validate_hook>
<![CDATA[
 sub {
 my $self = shift();
 my $req_el = \$self−>elements('bar')−>[0];
 die "required element 'bar' not found in " . $self−>tag_up_path() . "\n" if
 (! $req_el) or
 ((! $req_el−>def()−>is_nested()) and (! $req_el−>get()));
 }
]]>
</validate_hook>

This example demonstrates the common convention for writing hooks: most hooks are subroutines that are
compiled into code references when the Def is loaded by the system; they can expect to be passed certain
arguments when they are invoked; they should make use of the Comma API to do whatever work they need to
do; and they should return appropriate values or throw errors, depending on what is expected of them.

We can go over the first of these hooks line by line. (The second hook is exactly the same, except that 'bar'
is substituted for 'foo' in two places.) The first line is an opening CDATA tag. Perl snippets usually include
characters that are illegal in XML −− the arrow operator is particularly common in this kind of code −− so
wrapping the content in a CDATA section is a near necessity. The second line begins an anonymous
subroutine declaration. The third line establishes a named variable, $self, which comes from the first
argument to the sub. The next line fetches the first 'foo' element, if any, into $req_el −− the $req_el
variable now holds either an element object or an undefined value. The final statement throws an error if
either $req_el is not defined, or $req_el is a non−nested, empty element. (NOTE: FIXING the obvious
bug here, real real soon.)

The required example demonstrates the use of a validate_hook in the "structural" context −− checking the
sub−elements of a nested element. We can use the same approach to validate the contents of a non−nested
element, but in this case we must expect two arguments: the element and the proposed new content. Imagine,
if you will, an element, <delicate_sensibilities>, which must contain text that will not shock or offend
children, great aunts and members of the clergy. Imagine, also, a hypothetical CPAN module
Lingua::FCC_Check, which can check for words that are proscribed by the Federal Communications
Commission from over−the−air broadcast in the United States. Here, then, is a definition for the
<delicate_sensibilities> element:

<element>
 <name>delicate_sensibilities</name>
 <validate_hook>
 <![CDATA[
 use Lingua::FCC_Check;
 sub {

XML::Comma Guide

More Flexibility: Perl Hooks 28

 die "unacceptable language detected for " . $_[0]−>tag_up_path() . "\n" if
 Lingua::FCC_Check::check ($_[1]);
 }
]]>
 </validate_hook>
</element>

The only new thing in this example is the use statement that precedes the subroutine definition. We need to
pull in the Lingua::FCC_Check module, so we do that just as we would in a stand−alone program.

To summarize, validate_hooks may be defined for both simple and nested elements and should take the form
of anonymous subroutines. In the case of a nested element, the hook expects the element itself to be the sole
argument. In the case of a non−nested element, the hook expects to be passed the element and a string
containing the content to be checked. The validate() method calls any hooks that have been defined for an
element; as does validate_content(). More hooks (called as part of storage, indexing, etc.) will be introduced
as we go along, and documentation for all available hooks can be found in the hooks reference section.

Writing New Macros

Macros were designed as a way to extend the syntax of document definitions without modifying any of the
Comma system code. When an element definition is loaded, any macros that it contains are given a chance to
execute. Writing and installing macros is relatively easy. In general, macros work by installing hooks, so
you've already seen most of what you need to know to create a new macro.

For a macro to be available to the system, the definition loader must be able to find it. The loader will look in
the same places that it looks for defs (the list of directories in the defs_directory Comma variable), and it will
look in files named macro.extension, where macro is the name of the macro and extension is the string defined
by the macro_extension variable.

To turn the "FCC_Check" example from the previous section into a macro, we need to save a few lines of perl
code in a file that meets the above criteria (on my system, I'm using
/comma/defs/macros/fcc_approved.macro). Here is the contents of the file:

fcc_check: a macro to check element content for blue language

use Lingua::FCC_Check;
$self−>add_hook ('validate_hook',

 sub {
 die "unacceptable language detected for " . $_[0]−>tag_up_path() . "\n" if
 Lingua::FCC_Check::check ($_[1]);
 }

);

The first line is just a comment that helps us remember what this code snippet does, if we run across it in an
unexpected place. The use statement and the subroutine definition are familiar from the validation hook
version of this code. The only new thing here is the add_hook() method. The syntax is a little hard to see, but
add_hook() is quite simple: it expects a hook name as its first argument, and a subroutine reference or string
(which will be eval'ed and must become a subroutine reference) as its second argument. The subroutine is
installed as a hook of the requested type.

Turning the FCC check into a macro simplifies the definition of the delicate_sensibilities element

XML::Comma Guide

Writing New Macros 29

considerably. Even more imporantly, we can re−use this macro in any other Def on this system, and changes
−− bug fixes, new additions to the FCC list −− will only need to be made to the macro, not to each element
that defines the hook.

the new, improved delicate_sensibilities def
<element>
 <name>delicate_sensibilities</name>
 <macro>fcc_approved</macro>
</element>

The range macro (part of the standard Comma installation) provides a slightly more complex example. This
macro is used to limit content to a range of numbers, for example between one and ten. As such, range
requires two arguments; the first specifies the low end of the range and second the high end.

range macro: takes two arguments, low−end and high−end

my $low = $macro_args[0];
my $high = $macro_args[1];

$self−>add_hook ('validate_hook',

 sub {
 my ($doc, $content) = @_;
 if ($content < $low or
 $content > $high) {
 die "'$content' out of range ($low:$high)\n";
 };
 }

);

The only thing here that we haven't seen before is the pre−defined variable @macro_args. Like $self, the
@macro_args array is filled with the appropriate values by the macro loader. Macros can do whatever they
want with the arguments that are supplied them. This macro simply makes use of the first two elements in the
list as part of the hook subroutine. (It should actually probably do a little bit of pro−active error checking.)
Here is how we might use the range macro.

<element>
 <name>one_to_ten</name>
 <macro>range:1,10</macro>
</element>

#include: Defs From Components

Defs that are part of a single system or application usually share common element definitions, hooks, and
methods. These common components can be abstracted out, placed into separate files, and #include'ed into as
many defs as necessary.

<!−− file 'simple_el.include' −− anywhere in the defs_directories −−>
<element><name>included_el</name></element>

<!−− and a 'simple_def.def' that uses the above include −−>
<DocumentDefinition>
 <name>simple_def</name>
 <element><name>el_one</name></element>

XML::Comma Guide

#include: Defs From Components 30

 <element><name>el_two</name></element>

 <? #include simple_el ?>
</DocumentDefinition>

The #include syntax is quite different from most everything else that Comma defines for defs. XML
afficionados will recognize it as a preprocessor declaration, a special part of an XML document
that is intended for the consumption of a particular parser or tool−chain and should be ignored by everyone
else. Using the preprocessor declaration syntax makes it possible to exempt #include directives from the
normal rules governing what can go where in a def.

When a Comma parser encounters an #include statement, it looks at the word immediately following
#include and tries to find an .include file of that name somewhere in the system's def directories. If it
succeeds, the parser continues reading in the def from that file. When the parser reaches the end of the
.include file, it returns to the original file and continues on. Except for adjusting the filename and line
numbers that are reported if the parser encounters an error, this switch between files is completely transparent
−− using an #include is the same as cutting and pasting the content of the #include into the def.

Of course, this wouldn't be Comma if you couldn't gussy up your #includes with perl code. For many
purposes, the simple include behavior described above is perfectly sufficient. But sometimes the content of
the #include needs to be customized for the def at hand. Here is an example, an include that takes two
arguments and generates a customized method:

<!−− file 'first_word_method.include' −−>

sub {
 my ($method_name, $el_name) = @_;
 return <<END;

<method>
 <name>$method_name</name>
 <code><![CDATA[
 sub {
 my \$self = shift;
 my \$content = \$self−>get($el_name);
 \$content =~ m|^(\w+)|;
 return \$1 || '';
 }]]></code>
 </method>
END
}

<!−− and a def that uses 'first_word_method.include' −−>
<DocumentDefinition>
 <name>another_include_example</name>

 <element><name>paragraph</name></element>
 <? #include {first_word_method} 'fw_paragraph', 'paragraph' ?>
</DocumentDefinition>

Wrapping the name of the include in curly brackets indicates that this is a dynamic, rather than a static
include. Comma expects a dynamic .include file to return a code reference that, when executed, will return
the content to be folded into the def. Any text that follows the curly−bracketed include name will be treated as
a list to be eval'ed, then passed to the code reference as its arguments.

XML::Comma Guide

#include: Defs From Components 31

Indexing
XML::Comma implements storage and indexing separately.

Comma storage generally involves writing complete documents out to disk. Each stored document is
retrievable by a unique key, and collections of stored documents can be iterated across in key order. Most of
the time, stored documents are saved as normal, XML−formatted text files. Modern filesystems are fast,
robust and well understood. Relying on the standard filesystem functionality enables a systems administrator
to use normal tools for backup, maintenance and monitoring, and allows programmers to use standard utilities
for quick or simple manipulations. (It is very convenient, for example, to be able to do a quick grep on a
directory full of Docs.)

Comma indexing involves saving pieces of documents in a relational database so that complex search, sort
and retrieval operations can be performed flexibly and efficiently. These tasks are "above and beyond" what a
filesystem is capable of, so Comma builds its indexing functionality as a relational database framework. The
system can be configured to use any RDBMS; Comma provides a standard interface that sits atop the
sophisticated storage and query capabilities of platforms such as MySQL, Postgres or Oracle.

A User Index Definition

An index allows a collection of Docs to be searched and sorted according to their elements' contents. An index
may hold only one type of Doc. We'll build an index for our User Docs to demonstrate the basic features of
the indexing framework.

An index defines one or more fields, with each field normally corresponding to an element or method in the
document definition. A simple index might only contain a single field:

<DocumentDefinition>
<name>User</name>
<element><name>username</name></element>
<element><name>email</name></element>
<element><name>full_name</name></element>

<nested_element>
<name>address</name>
<element><name>street1</name></element>
<element><name>street2</name></element>
<element><name>city</name></element>
<element><name>state</name></element>
<element><name>zip</name></element>
</nested_element>

<plural>'address'</plural>

<store>
<name>main</name>
<base>comma_guide</base>
<location>Sequential_file</location>
</store>

<index>
<name>main</name>
<field><name>email</name></field>
</index>

Indexing 32

</DocumentDefinition>

With the main index part of our document definition, we can use the index_update() method to add
documents to it. Calling index_update() −− which takes as its index=> argument the name of the index to
update −− adds a document to an index or, if the document is already present, updates the index to reflect any
changes.

add/update this Doc's record in the 'main' index
$doc−>index_update (index => 'main');

On the other hand, index_remove() deletes a document from an index. Like index_update it expects the
name of an index as an index=> argument.

delete this Doc's record in the 'main' index
$doc−>index_remove (index=>'main');

Querying the Index: Iterators

We need a way to get at the User Docs that are in our index. First we need a handle to the index itself. Then
we can ask the index for an iterator that will step through all of the Docs:

get 'main' index
my $index = XML::Comma::Def−>read(name=>'User')−>get_index ('main');
get iterator
my $i = $index−>iterator();
iterate, printing out "$key: $email"
while ($i) {
 print $i−>doc_key() . ': ' . $i−>email() . "\n";
 $i++;
}

There are several new methods here. The get_index() method operates like get_storage(), taking a single
argument and returning the index of that name. The index's iterator() method returns an iterator object, which
provides a means to step through the documents in the index. An iterator can only deal with documents one at
a time, and can only advance in one direction through its sequence. Here, we use the ++ operator to advance
the iterator.

Every iterator exposes its fields as methods, so we call the email() method to get the value of this record's
email field −− a value which came originally from the email element of the Doc that this record represents.

Every iterator implicitly includes the doc_key and the doc_id as fields, so doc_key() and doc_id() are always
available as methods. Another special method, record_last_modified() is also available. As its name
suggests, record_last_modified() returns a timestamp (unix system time) indicating when the index record
was last changed.

The ++ operator is actually a short cut for a named method, iterator_next(). And if that isn't bad enough,
there's an implicit check of the iterator_has_stuff() method triggered by the boolean context of the while
statement. The implicit−nesses are an example of operator overloading, which is exmplained in detail in the
Camel book. For our purposes, suffice it to say that 1) it is easy and correct to write an iterator loop as above,
and 2) you've just seen the only two overloaded operators that the Iterator class defines −− ++ =>
iterator_next() and boolean−ization => iterator_has_stuff().

XML::Comma Guide

Querying the Index: Iterators 33

In general, I prefer compact idioms, and the simple ++ loop is both compact and (to me, anyway) highly
readable. However, in the spirit of over−explanation, here are several exactly−equivalent versions of the lowly
iterator loop. (And a note to careful observers: it doesn't matter that some of these loops "increment" the
iterator on loop entry and some don't −− an iterator contrives to point to its first record in a "lazy" fashion so
that programmers don't ever have to worry about whether an iterator is newly−created or not.)

my $i = $index−>iterator();
while ($i++) {
 $i−>foo();
}

my $i = $index−>iterator();
while ($i−>iterator_has_stuff()) {
 $i−>foo();
 $i−>iterator_next();
}

my $i = $index−>iterator();
while ($i) {
 $i−>foo();
 $i−>iterator_next();
}

my $i = $index−>iterator();
while ($i−>iterator_next()) {
 $i−>foo();
}

my $i = $index−>iterator();
while ($i) {
 $i−>foo();
 $i++;
}

NOTE −− there is a bug in perl 5.6.x and 5.8.0 that makes the first (and most compact) idiom above leak
memory. The iterator object won't get properly garbage collected, when the while() look is written like
that. This can be a big problem in long−running contexts (such as inside a web server. For any long−running
code, use one of the more verbose forms.

Of course, an iterator that steps through all of the records in an index is not usually what you want. The
iterator() method accepts arguments that specify matching and sorting criteria, making it possible to construct
iterators that return a subset of an index in a specified order.

The where_clause => <sql−where> argument matches a conditional phrase against the index's fields to
narrow down the records that are returned. The order_by => <sql−order−by> argument controls the ordering
of the records.

The iterator() method constructs a complex SQL statement that, when executed by the database, selects the
records that the iterator will include. If a where_clause or order_by argument is supplied when an iterator is
constructed, that piece of SQL logic is integrated into the iterator's complete SQL statement. Given a
knowledge of generic SQL, it is easy to write where_clause and order_by arguments −− simply treat each
field as you would a column in the database and the iterator parser will do the rest. An iterator with botha
where_clause and an order_by might look like this:

find all users with hotmail addresses and sort alphabetically
my $i = $index−>iterator (where_clause => 'email LIKE "%.hotmail.com"',

XML::Comma Guide

Querying the Index: Iterators 34

 order_by => 'email');

Let's add another couple of fields to this index, so we can build some more interesting iterators. The username
element is easy to add; it's just another field. If we also want to add the zip of the first address, that's a little
harder. The index fields that we've seen so far map to top−level pieces of a Doc. One way to get at the zip
information we need is to add a method to the User Def that fetches the zip of the first address. Here is the
new method, along with the expanded index:

<!−− a method to return the zip code of the first address −−>
<method>
 <name>first_zip</name>
 <code>
 <![CDATA[sub { return $_[0]−>element('address')−>element('zip') }]]>
 </code>
</method>

<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
</index>

Another way, if this method seems not likely to be used except to build the index table, is to add a code
specifier to the field:

<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field>
 <name>first_zip</name>
 <code>
 <![CDATA[sub { return $_[0]−>element('address')−>element('zip') }]]>
 </code>
</field>
</index>

As you can see, this is almost like adding another method to the Def −− in fact, we didn't change the
embedded perl at all. The main difference is that we're not "cluttering up" the top level of our Def with a
method that will only be used as part of the indexing operations. The code block is passed two arguments, the
doc being indexed and the index element. It turns out that you almost always use the doc, and almost never
use the index.

Adding a code block to a field disassociates the name of the field from the data that it stores. This is,
obviously, useful. It can also be confusing. The default, non−code behavior is worth sticking to whenever
possible, to keep defs and programs as maintainable as possible. (A code block can also be part of collection
and sort elements, which are described below.)

And here are a few possible iterators:

find all the users with .edu addresses −− in any order
my $i = $index−>iterator (where_clause => 'email LIKE "%.edu"');

find all the users with .edu addresses in Bevery Hills
my $i = $index−>iterator (where_clause => 'email LIKE "%.edu" AND zip = "90210'");

XML::Comma Guide

Querying the Index: Iterators 35

sort the .edu email addresses by string length in descending order, then
alphabetically by username (uses mysql's LENGTH function)
my $i = $index−>iterator (where_clause => 'email LIKE "%.edu"',
 order_by => 'DESC LENGTH(email), username');

Plural Items in Indexes

The field elements of an index hold values derived from a Doc's elements and methods. As we've seen, fields
can be used to select sets of records from an index, and to control the order in which those results are returned.
One limitation of using fields in this way, however, is that each field can only hold a single value per record.
Looked at another way, fields do an excellent job standing in for singular elements, but are not at all suited to
dealing with plural elements. A field that corresponds to a plural element will always contain only the value of
the first of those elements.

Another type of index element, the collection, is designed to accomodate plural values, and to allow the kinds
of "sorting" operations that are common to many kinds of documents. Unlike a field, a collection cannot be
used in a where clause; collections are a special−purpose tool. Let's add a collection to our User index that
will allow us to select all of our records that include an address with a given zip−code −− any address this
time, not just the first one.

<!−− a method to return the zip codes of each address, as an array −−>
<method>
 <name>zips</name>
 <code>
 <![CDATA[sub {
 my @addresses;
 foreach my $addr $_[0]−>elements('address') {
 push @addresses, $addr−>element('zip')−>get();
 }
 return @addresses;
]]>
 </code>
</method>

<!−− the expanded index definition, now including the zips info
<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
<collection><name>zips</name></collection></index>

We tied the zips collection to a method, but we could just as easily have tied it to a plural, non−nested
element. The collection isn't particular, it just wants to be handed an array when the index is updated.

To select all of the users with an address in a given zip code, we request an iterator qualified by a
collection_spec. A collection_spec is a string of the form <collection_name>:<value>. The collection_spec
argument can be combined with the where_clause and order_by specifiers that we've already seen:

select all the users with an address in the 20003 zip code −− in any order
my $i = $index−>iterator (collection_spec => 'zips:20003');

select the users as above, and order them alphabetically by username
my $i = $index−>iterator (collection_spec => 'zips:20003',
 order_by => 'username');

XML::Comma Guide

Plural Items in Indexes 36

select all of the users with an address in 20003 who also have a .edu
email address, and order them alphabetically by username
my $i = $index−>iterator (collection_spec => 'zips:20003',
 where_clause => 'email LIKE "%.edu"',
 order_by => 'username');

Complex Collection Selectors

It is possible to specify complex collection_spec arguments, when creating an Iterator.

The "pairs" in a spec can be strung together with AND and OR.•
AND'ed and OR'ed phrases can be parenthesized.•
Any pair can be prefixed with a NOT to ask for Docs that do not match the pair.•
A pair that includes spaces in its value part can be specified by surrounding the pair with single
quotes.

•

A pair that includes single quotes in its value part can be specified by surrounding the pair with single
quotes and escaping the internal single quotes with a single backslash.

•

For example:

select all of the users with an address in any 2000x OR 0213x zip code
who also have a .edu email address, and order them alphabetically by
username
my $i = $index−>iterator (collection_spec => 'zips:2000% AND zips:0213%',
 where_clause => 'email LIKE "%.edu"',
 order_by => 'username');

select users with an address NOT in the 20003 zip code.
my $i = $index−>iterator (collection_spec => 'NOT zips:20003');

a hypothetical collection pair with spaces and single quotes. We use
two backslashes here because the double quotes that surround the whole
string treat a single backslash as part of an escape character!
my $i = $index−>iterator (collection_spec => "'test:it\\'s easy' OR
 'test:it\\'s hard'");

It is fairly easy to create complex specs that slow down database queries quite a lot. In particular, OR'ing
together selections on large collections is very slow.

Full Text Search

A special content−holder is available that enables full−text search on an index component. We could make all
of a User's address information searchable by defining a method to generate a chunk of "address text", then
defining an index textsearch container:

<!−− addresses_text: a method to glob all of a User's addresses together into
 a single string −−>
<method>
<name>addresses_text</name>
<code>
 <![CDATA[
 sub {
 my $self = shift();
 my $addr_text = $self−>full_name() . "\n";
 foreach my $a ($self−>elements('address'));

XML::Comma Guide

Complex Collection Selectors 37

 $addr_text .= $a−>street1() . "\n".
 $addr_text .= $a−>street2() . "\n" .
 $addr_text .= $a−>city() . ' ' . $a−>state() . ' ' . $a−>zip() . "\n";
 }
 return $addr_text;
 }
]]>
</code>
</method>

<!−− the 'main' index, redefined to add full−text search on the addresses −−>
<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
<collection><name>zips</name></collection>
<textsearch><name>addresses_text</name></textsearch>
</index>

With the new 'addresses_text' textsearch in place, we can use the full−text search feature in constructing
iterators. A textsearch_spec argument specifies keywords that must appear in a record for it to be returned as
part of an iterator's result set:

look up all users who have the word "elm" (or "elms", "elmy", "elmed",
etc.) in any of their addresses
my $i = $index−>iterator (textsearch_spec=>'addresses_text:elm');

look up all users with an 'elm' and a 'springfield' in any
of their addresses
my $i = $index−>iterator (textsearch_spec=>'addresses_text:elm springfield');

As the comments in the above example imply, the textsearch subsystem includes a "preprocessor" interface
that allows words to be stemmed and pruned before indexing. The preprocessor defaults to
XML::Comma::Pkg::Textsearch::Preprocessor_En, which handles English text. It includes a stop list of
roughly 500 words, and relies on the CPAN module Lingua::Stem to do its stemming.

There are currently two other preprocessors in the standard distribution, Preprocessor_Fr for French and
Preprocessor_Sp for Spanish. If you are only handling English−language content, you can skip the next three
code examples, which detail how to specify Preprocessors other than Preprocessor_En.

A textsearch's which_preprocessor element controls which preprocessor will be used: which_preprocessor
should define a sub that will be passed some combination of four arguments −− an active $doc; $index and
$textsearch objects; and a search "attribute." The sub must return the name of the Preprocessor package that
should be used. Here is a typical example:

 <textsearch>
 <name>body_text</name>
 <which_preprocessor>
 sub { return 'XML::Comma::Pkg::Textsearch::Preprocessor_Fr'; }
 </which_preprocessor>
 </textsearch>

Not much to it.

Things get somewhat more complex when we have to choose between multiple pre−processors on the fly. A
Preprocessor is used in two different contexts: 1) when a doc is indexed, and 2) when a search is performed.

XML::Comma Guide

Complex Collection Selectors 38

The routine below uses the $doc argument to determine what Preprocessor to use in the former case, and the
$attribute argument in the latter.

 <textsearch>
 <name>paragraph</name>
 <which_preprocessor>
 <![CDATA[
 use XML::Comma::Pkg::Textsearch::Preprocessor_En;
 use XML::Comma::Pkg::Textsearch::Preprocessor_Sp;
 sub {
 my ($doc, $index, $ts, $attribute) = @_;
 if ($doc−>lang_code() eq 'sp' or $attribute eq 'sp') {
 return 'XML::Comma::Pkg::Textsearch::Preprocessor_Sp';
 } else {
 return 'XML::Comma::Pkg::Textsearch::Preprocessor_En';
 }
 }
]]>
 </which_preprocessor>
 </textsearch>

The $attribute argument's value comes from the textsearch_spec, which has a special form for just this
purpose:

look up a word in the index, stemmed by the Spanish pre_processor
my $i = $index−>iterator (textsearch_spec=>'body_text{sp}:lobos');

The extra bit of text after the textsearch name, enclosed in curly brackets, is stripped off and passed as the
$attribute to the which_preprocessor sub.

The back end of the textsearch facility is currently implemented on top of, and as part of, the Comma
database−specific modules. It's efficiency is only mediocre, and performing the indexing operation on each
document write is somewhat resource−intensive. Because of this, a textsearch can specify that it's operations
should be deferred −− performed as a batch rather than on each and every update of the index. A cron job or
application hook can be written to call an index's sync_deferred_textsearches() method at some convenient
time (or at some regular interval).

<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
<collection><name>zips</name></collection>
<textsearch>
 <name>addresses_text</name>
 <defer_on_update>1</defer_on_update>
</textsearch>
</index>

A number of important features are missing from the current implementation of full−text search: support for
more languages, the ability to search for phrases within text, boolean OR'ing, etc. The strengths of the current
implementation are that the full−text search is fully integrated with the rest of the database system, so
complex iterators that include several different kinds of qualifiers can easily be constructed; and that the
storage overhead is relatively small (only the inverted index is stored in the database, and that in a compressed
form).

XML::Comma Guide

Complex Collection Selectors 39

Work to improve the textsearch framework is certainly an area of interest for the Comma developers. It is
likely that integration with database−provided full−text search capabilities is the best long−term option for
fast, robust operation. Oracle certainly provides such capabilities. For the moment, the open source databases
lag behind in this area.

Using an Iterator Over and Over: iterator_refresh()

It is often convenient to "reuse" an iterator. The iterator_refresh() method re−fills and resets the iterator. In
its no−argument form iterator_refresh() is equivalent to asking the index for a new iterator with exactly the
same specifications. However, the method also takes two optional arguments to limit the total number and the
starting position of the results that are returned. Here are some examples:

usage: $iterator−>iterator_refresh ([limit_number [, limit_offset]]);

simple refresh of a once−used iterator
#
my $i = $index−>iterator (collection_spec => 'zips:20003');
while ($i++) {
 # ... do some stuff
}
$i−>iterator_refresh();
now we can loop through again
while ($i++) {
 # .. do some other stuff
}

using iterator_refresh() to process only the first 10 results of a set
#
my $i = $index−>iterator()−>iterator_refresh (10);
while ($i++) {
 # ... do something with the first 10 (or fewer, if there weren't
 # even that many)
}

using iterator_refresh() to process the eleventh through fifteenth
results (noting that the second argument, the offset, is zero−indexed)
#
my $i = $index−>iterator()−>iterator_refresh (5, 10);
while ($i++) {
 # ... do something with these five results (again, assuming that
 # there are that many)
}

Fetching the Record's Doc: read_doc() and retrieve_doc()

Generally, an index should be designed so that its fields hold the most commonly−used pieces of information
in a Doc. Of course, any criterion that will be used to select from an index must be available as a field or
collection. Additionally, any part of a Doc that is regularly used during an iteration should also be defined as a
field.

But sometimes you actually need to get the Doc itself from an iterator −− perhaps to do some complex read
operation, or to check the content of an element that is so infrequently used that it makes little sense to include
it as a field, or even to change the Doc and re−store it. Two iterator methods make this possible: read_doc()

XML::Comma Guide

Using an Iterator Over and Over: iterator_refresh() 40

and retrieve_doc().

As the name suggests, read_doc() is analagous to Doc−>read() and fetches a read−only copy of the
document, while retrieve_doc() is like Doc−>retrieve(), returning a fully modifiable Doc.

print a simple list indicating how many addresses each User has defined
my $i = $index−>iterator();
while ($i++) {
 print $i−>doc_key() . ': ' . scalar @{$i−>read_doc()−>elements('address')} . "\n";
}

permanently delete (from the store that this index is tied to)
all documents with a .edu email address
my $i = $index−>iterator (where_clause => 'email LIKE
"%.edu"'); while ($i++) {
 print "deleting " $i−>doc_key();
 $i−>retrieve_doc()−>erase();
}

Fetching One Record: single() and Company

In iterator retrieves a set of records, in a particular order. Sometimes you only want one record from an index.
The single() method accepts the same arguments as iterator(), but it never returns more than one record, and
if no records satisfy its specification it returns undef.

Usually, single() is used when you know there will only be one record in the index that matches your selection
criteria. For example, we could write a pre_store_hook to make sure that no document is ever stored that has
the same email address as a document that is already present. (See the section on advanced store techniques
for more information about store hooks.)

<pre_store_hook>
<![CDATA[
 sub {
 my ($self, $store) = @_;
 my $email = $self−>element('email')−>get();
 my $index = $self−>def()−>get_index('main');
 if ($index−>single(where_clause => "email = '$email'")) {
 die "the email address '$email' is already in use\n";
 }
 }
]]>
</pre_store_hook>

The single() method isn't strictly necessary (you can always substitute some equivalent, if longer and more
involved, iterator creation and refresh statement), but it does save some typing and makes code more readable.
In the same spirit, two more methods exist that provide additional short−cuttage: single_read() and
single_retrieve().

As their names suggest, single_read() is a single() call plus (if possible) a read_doc(), and single_retrieve is
the same except with retrieve_doc(). Both methods return undef if there is no record in the index that
matches the iterator criteria. We can (somewhat frivolously) modify our pre_store_hook to demonstrate the
use of single_read():

<pre_store_hook>
<![CDATA[

XML::Comma Guide

Fetching One Record: single() and Company 41

 sub {
 my ($self, $store) = @_;
 my $email = $self−>element('email')−>get();
 my $index = $self−>def()−>get_index('main');
 if (my $other_user = $index−>single_read(where_clause => "email = '$email'")) {
 my $other_users_location = $other_user−>element('address')−>[0]−>element('zip')−>get();
 die "the email address '$email' is already in use by someone in zip code $other_users_location\n";
 }
 }
]]>
</pre_store_hook>

Getting a Total Rather Than an Iterator: count()

One more index method exists that, like single(), single_read() and single_retrieve(), accepts the same
arguments as iterator(): count(). The count() method returns the total number of records that match the
supplied criteria.

how many Users have a .edu email address?
my $total = $index−>count (where_clause => 'email LIKE "%.edu"');

Using SQL Aggregates: aggregate (function => ...)

It is possible to get information from an Index using the "aggregate" functions provided by SQL. What
functions are available (and how they work) are highly database−dependent. But, in general, it is possible to
ask a Comma Index to create an aggregate() object in much the same way as an iterator() is created.

ask for the sum of all the 'mailings_sent' columns in a
hypothetical index
my $sum = $index−>aggregate (function => "SUM(mailings_sent)");

ask for the average age of all users in the 20003 zip code
my $avg_age = $index−>aggregate (function => "AVG(age)",
 collection_spec−>'zips:20003');

Actions at Index Time: index_hook

An index_hook is a hook that is run each time a record is added or updated, just before any changes are made
to the database. Any number of these hooks can be defined for an index; they will be run in the order in which
they appear in the Def. Two arguments are passed to the index_hook when it is invoked: the Doc being
indexed and the index object. The return value of the hook is not used, but if the hook dies then the indexing
operation is silently aborted.

Here is our index definition with a hook that prevents any ".edu" users from appearing in an index:

<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
<collection><name>zips</name></collection>

<index_hook>
 <![CDATA[sub {
 my ($doc, $index) = @_;

XML::Comma Guide

Getting a Total Rather Than an Iterator: count() 42

 die if $doc−>element('email')−>get() =~ /\.edu$/;
 }]]>
</index_hook>
</index>

Defining Methods for an Index

You can add some flexibility to an index by defining index methods, pieces of code that can be called from
an Iterator in the same way that element methods can be called from a Doc or element. Index methods are
written for much the same reasons as element methods: to "standardize" a commonly−used piece of
functionality, or to process information in a way that depends on some dynamic input (such as the time of
day).

Here is our index definition with a fairly trivial index method added that simply checks whether a record's
email address is in a hard−coded list:

<index>
<name>main</name>
<field><name>email</name></field>
<field><name>username</name></field>
<field><name>first_zip</name></field>
<collection><name>zips</name></collection>

<method>
 <name>in_denied_list</name>
 <code>
 <![CDATA[sub {
 my @denied_list = ('spammer@spamming−org.org',
 'impolite_person@unresponsize_isp.com');
 my ($iterator, @rest_of_args) = @_;
 foreach my $denied (@denied_list) {
 return 1 if $iterator−>email() eq $denied;
 }
 return 0;
 }]]>
 </code>
</method>
</index>

And here is a simple scan through the entire index, checking if each record is in the denied list or not:

my $i = $index−>iterator();
while ($i++) {
 if ($i−>in_denied_list()) {
 print $i−>username() . " is in the denied−list\n";
 } else {
 print $i−>username() . " is clean as a whistle\n";
 }
}

More Configuration, More SQL

An index is stored, behind the scenes, as a set of tables in a relational database. The Comma indexing
framework provides a layer of abstraction on top of the database, and most of the time a programmer doesn't
need to worry about the underlying implementation. But there are a few limitations that one should be aware
of, and a few configuration directives that can make indexes more efficient and usable.

XML::Comma Guide

Defining Methods for an Index 43

Configuring Fields

Each piece of information stored in a database must have a type. Every field in a Comma index defaults to the
VARCHAR(255) type. It is necessary to specify a different type if a field needs to

accomodate values longer than 255 characters, or•
use a more space−efficient representation, or•
support comparisons or operations (in where clauses, for example) other than those that VARCHAR
provides.

•

A sql_type element can be used to specify the SQL type for a field. Here is an index definition with every
field fully specified as to type:

<index>
<name>main</name>
<field>
 <name>email</name>
 <sql_type>VARCHAR(150)</sql_type>
</field>
<field>
 <name>username</name>
 <sql_type>VARCHAR(40)</sql_type>
</field>
<field>
 <name>first_zip</name>
 <sql_type>CHAR(5)</sql_type>
</field>
<collection><name>zips</name></collection>
</index>

The doc_id_sql_type element can be used to specify the SQL type for the columns that store the doc_id parts
of records. This also defaults to VARCHAR(255), and that's usually fine, but for particular efficiency it too
can be changed. NOTE: unlike most other index elements, the doc_id_sql_type for an index should not be
altered after an index is created the first time. If you need to change the doc_id_sql_type, you'll need to drop
and rebuild the index. Collections can also specify a sql_type, which will be used only by 'binary table' type
collections. Like the doc_id_sql_type, this specifier should not be changed for an existing index.

Another rarely−used specifier is the store element. By convention, an index shares its name with the store to
which it is bound (remember, an index can only hold information about documents from a single store). But
the convention is sometimes too restrictive −− for example, two indexes using the same store obviously can't
have the same name. The store element allows an index to explicitly state with which store it is associated.
Here is an index definition that uses both the store and doc_id_sql_type specifiers:

<index>
<name>just_emails</name>
<store>main</store>
<doc_id_sql_type>CHAR(12)</doc_id_sql_type>
<field>
 <name>email</name>
 <sql_type>VARCHAR(150)</sql_type>
</field>
</index>

The doc_id specifiers are passed directly to the relational database. Databases differ in how they define (and
name) even commonly−used types, so which types are available from Comma will obviously depend on

XML::Comma Guide

Configuring Fields 44

which database is being used. The Comma database adapters handle typing issues for the columns that are
used internally as part of the abstraction layer, but when you start specifying SQL types for document ids and
index fields, you're on your own.

Configuring Collections

Collection information can be stored in one of three ways:

in a stringified form in the main Index table (the default)•
in a binary table containing a list of doc_id/value pairs•
in many tables, each containing a list of doc_ids•

Each of these has advantages and disadvantages.

The stringified type is the simplest. No extra database tables are created, and the values of the collection are
available directly from the Iterator. Partial matches (using the SQL wildcard character %) that are anchored at
either the front or back of a string are allowed.

The binary table type requires one additional table to be maintained in the database. This type of collection
has the potential to provide the best mixture of flexibility and speed, although the current implementation is
less advanced than it should be. A number of optimizations that would improve the speed of this type of
storage are yet to be performed, and the MySQL database doesn't support some types of queries that would be
particularly useful in this regard. Partial matches are allowed, but NOT pairs are not. And any given
binary−table−typed collection may be used only once collection_spec.

The many tables type requires a table to maintained in the database for each unique value that occurs in the
collection. Collections of this type are usually tied to elements that are defined by an enum (or are similarly
restricted in their allowed values).

This type is not very flexible, but can provide the quickest select times for many applications. Because many
tables data is spread across several database tables, it is often possible for the system to take shortcuts that are
not possible for stringified or binary table collection. And each of the tables in a collection of this type can
be clean()ed separately (see below for an explanation of <clean> clauses), further reducing the amount of
data that must be sifted through to create each Iterator. Partial matches are not allowed for many−tables−typed
collections, but NOT pairs are.

Here are three collections that will hold the same data but store that data differently behind the scenes (with
<clean> behavior specified for the many tables version, for good measure:

 <collection>
 <name>zips_str</name>
 <code><![CDATA[sub { $_[0]−>zips() }]]></code>
 </collection>

 <collection>
 <name>zips_bt</name>
 <type>binary table</type>
 <code><![CDATA[sub { $_[0]−>zips() }]]></code>
 </collection>

 <collection>
 <name>zips_mt</name>

XML::Comma Guide

Configuring Collections 45

 <type>many tables</type>
 <code><![CDATA[sub { $_[0]−>zips() }]]></code>
 <clean>
 <to_size>10_000</to_size>
 <size_trigger>10_500</size_trigger>
 <order_by>doc_id DESC</order_by>
 </clean>
 </collection>

The fields=> Argument

One more way to increase the speed of Iterator creation is to ask for only a subset of the fields defined in the
Index:

we only need email addresses
my $iterator = $index−>iterator (fields => ['email']);

This reduces the amount of data that the database must shuffle around when joining tables together. It
generally only helps when used in conjunction with many−tables− and binary−table−type collections, and on
Indexes that define many fields. But in some cases the speed increases can be dramatic: 20% or more.

The fields=> argument should take the form of a reference to an array of field names. The resulting
Iterator will only have data for the doc_id and record_last_modified pseudo−fields, and for the
fields named in the argument array ref.

Changes: Automatic Updating of Database Structure

Comma does its best to adjust the table structures of the database to match any changes that are made to an
index definition. Mostly, this is possible. You can always add or remove a collection or field. You can usually
change the SQL type of a field −− only the willingness of the database to convert already−stored information
from the old type to the new limits this.

You can not change the doc_id_sql_type without dropping and rebuilding the database.

Clean and Rebuild

Left to their own devices, indexes will grow as new records are added. But larger indexes can be slower to
query, or take up too much disk space. And some indexes are designed specifically to contain only a subset of
documents: the n most recently−updated, for example, or all of the documents that haven't yet been tagged
"archive."

You have already seen how to write an index_hook that prevents documents from being added to the index.
But to dynamically scan an index and remove records requires a different approach.

The clean() method triggers the "cleaning" of an index. During a clean, records are deleted according to the
criteria listed in the index definition's clean section. Here is a simple example index definition that uses a
clean section to delete records that haven't been "used" in 30 days:

<index>
 <name>main</name>
 <field>username</field>
 <field>email</field>

XML::Comma Guide

The fields=> Argument 46

 <field>last_used</field>
 <clean>
 <erase_where_clause>last_used > 60*60*24*30</erase_where_clause>
 </clean>
</index>

The erase_where_clause contains a bit of SQL that will be passed to the database. Any doc record that
satisfies the erase_where_clause will be removed from the index. Sometimes it's useful to construct the
erase_where_clause using a bit of perl. If the first character is a {, the content of the erase_where_clause
specifier is eval'ed before being passed to the database:

 <clean>
 <erase_where_clause><![CDATA[
 { 'record_last_modified < ' . (time() − 80*80*24) }
]]></erase_where_clause>
 </clean>

The clean method can, of course, be called just like any other, but it is common to use a cron job to clean a
database each night, or each week.

simply call clean() to clean an index
$index−>clean()

perhaps a command−line version from within a cron (or similar) job
perl −MXML::Comma −e 'XML::Comma::Def−>read(name=>"User")−>get_index("main")−>clean();';

The clean operation is as careful as possible about running in the background: records added while a clean is
in progress are ignored by the clean, and only one clean runs at a time (if clean() is called while another clean
is already in progress, it simply returns).

The erase_where_clause is one style of clean, but there is another. A clean can define a to_size element to
trim an index down to a certain number of records, and specify an order_by clause to make sure that the list
of records is arranged in the correct order before being trimmed. (If no order_by is given, the index's
default_order_by is used, which itself defaults to doc_id.) Here is a clean section that keeps only the 1000
most−recently−used records:

<clean>
 <to_size>1000</to_size>
 <order_by>last_used DESC</order_by>
</clean>

An alternative to calling clean() manually (or from a cron job) is to configure cleaning to take place
automatically when an index contains a certain number of records. If a size_trigger element is present,
Comma will check the size of the index after each insert() and if that size equals or exceeds the number given
in the size_trigger specifier then a clean will be triggered.

<clean>
 <to_size>1000</to_size>
 <order_by>last_used DESC</order_by>
 <size_trigger>1200</size_trigger>
</clean>

A clean section can also apply to an individual collection, rather than to the entire index. In this case, the
clean effects only a table of pointers holding collection information, not the main records themselves.
Configuring an index so that its collection tables stay reasonably small can dramatically improve

XML::Comma Guide

The fields=> Argument 47

performance.

Sometimes, even a clean isn't clean enough. If several fields are added to an existing index, or the criteria for
indexing changes radically, or a problem with an index is identified, it can be necessary to rebuild() the
index.

A rebuild can be done starting from scratch (after dropping any existing index tables), or on a fully−populated
index. In either case, the rebuild will add and update information in the database while it runs, then clean the
index after it is finished −− so an index can be used while a rebuild is in progress. Care should be taken,
however, not to stop a rebuild operation before it has completed.

As might be expected, the rebuild() method is used to trigger a rebuild operation. During a rebuild, Comma
iterates backwards through all of the documents in a store, calling index_update() on each Doc. All of the
normal rules apply, so Docs that would not be added to an index by an explicit call to index_update() are not
added by a rebuild(), and all hooks are run as normal for each Doc.

It can take a long time to handle all of the documents in a large store, and often an index will only want to
treat a subset of documents. The stop_rebuild_hook allows some "stop−now−if" logic to be inserted into the
rebuild cycle. This hook was designed to gracefully handle the common case of an index that does not include
documents that are "older" than a certain cut−off age. (Which is also, of course, why the rebuild cycle iterates
backwards through a store. To be of much use, a stop_rebuild_hook must be used in conjunction with a store
that sorts doc ids by criteria that are roughly similar to the criteria that the stop_rebuild_hook cares about.
But you already knew that.)

The stop_rebuild_hook is passed two arguments, the doc in question and the index object, and should return
true if the rebuild should stop cycling through the storage documents and move on to its cleanup phase.

<index>
 <name>new_users</name>
 <store>sequential_user_id_store</store>
 <field>username</field>
 <field>email</field>
 <field>created_timestamp</field>
 <stop_rebuild_hook>
 <![CDATA[sub {
 my ($doc, $index) = @_;
 my $age = time() − $doc−>created_timestamp();
 return $age > (60*60*24*90);
 }]]>
 </stop_rebuild_hook>
</index>

XML::Comma Guide

The fields=> Argument 48

Storage in More Detail: Hooks, Output Filters and
Location Modules

Hooks: pre_store_hook, post_store_hook, erase_hook

Three types of hooks are available to run during store operations. Just before a document is stored, each
defined pre_store_hook runs. Three arguments are passed: the doc being stored and (though these are rarely
needed) the store definition and a hashref containing the args that were passed to the original store() call.
(This access to the original %args allows hook code to take actions based on programmer−defined args. You
can pass anything you want as part of the store args −− its completely open−ended.) If any of the
pre_store_hooksdie then the store operation is aborted, the remaining hooks are ignored, and a
STORE_ERROR is thrown.

Just after a doc is stored, each defined post_store_hook runs, again taking the doc in question, the store
definition and the args hashref as its arguments. Every post_store_hook runs and any errors that are thrown
are ignored.

As a side note: very occasionally you may want to modify the doc itself inside a post_store_hook, and then to
save those changes. (You might do this if, for example, you need to have the doc's id available before your
code can run, which requires that the code be installed as a post rather than pre store_hook.) A special flag for
the store() method −− no_hooks=>1 −− is available to allow a store() to be performed without its attendant
pre and post hooks. This is obviously a power that should not be abused.

Before a doc is erased, each defined erase_hook runs. Three arguments are passed to an erase_hook: the doc
being erased, the store definition, and the doc's doc_location. If any erase_hook dies the erase operation is
aborted (and no more hooks are run). It's worth noting that an erase operation happens −− and the erase_hooks
are run −− during a move() as well as during a simple erase().

More on Location Chains

A store definition's location chain controls how a doc is written out to long−term storage. A location chain
must generate both a storage "location" and a document id. The current location modules all use the filesytem,
but −− in principle at least −− the Store interface is abstract enough that modules could equally well use a
database, a tape drive, or a networked archive of some kind.

Location modules come in two kinds, which betray their file−system−centric roots by being called _dir and
_file. The _dir modules specify "directory" locations; a dir module cannot be used as the final link in a
location chain. The _file modules specify the "file" portion of a location; a _file module can only be used as
the final link in a chain.

Standard _dir Modules

Sequential_dir creates sequentially−numbered directories. It takes two arguments, both of which are
optional: max specifies the highest legal number in the sequence, and defaults to 9999; digits specifies how
the number will be formatted, and defaults to normal decimal notation. The max number determines how
many entries the Sequential_dir can hold. Once the max number has been reached, all subsequent store
attempts throw an error. The directory name will be created by formatting the current sequence number
according to the digits specifier, and padding the formatted string with leading zeros, so that alpha−numeric

Storage in More Detail: Hooks, Output Filters and Location Modules 49

sorting is possible. (Note that if the max or digits specifier is changed, the width or format of
subsequently−created directory names could change, possibly ruining the sort.) Behind the scenes,
Sequential_dir uses the Math::BaseCalc module to do the formatting, and the digits argument accepts any
digit set that Math::BaseCalc understands. For example:

<store>
 <name>hex_directory_plus_abc_filenames</name>
 <base>strange/storage/base</base>
 <location>Sequential_dir: hex, 'max', 999</location>
 <location>Sequential_file: 'digits', ['a','b', 'c'], 'max', 4</location>
</store>

Note that some (one is tempted to qualify them as perverse) digit−set choices will render alpha−numeric
sorting useless for reconstructing the order in which the directories were created. The id fragment generated
by the Sequential_dir module is simply the directory name.

GMT_3layer_dir creates a directory structure derived from the current date. As the name implies, three
directory layers are created, in the pattern YYYY/MM/DD. The id fragment that this module generates is the
directory structure without internal separators: YYYMMDD.

Derived_dir creates a directory from the contents of a doc element or the return value of a method. The
derive_from argument is required, and specifies the element or method that will be called to generate the
filename −− this works like the shortcut syntax: $doc−><derive_from>(). The width argument is also
required, and specifies the number of characters that will be in the directory name. The derive_from'ed value
will be left−padded with zeros if it is shorter than width, or truncated if it is longer. The id fragment generated
by Derived_dir is the same as the directory name.

Standard _file Modules

Sequential_file creates unique, sequentially−numbered files. It takes three arguments, all of which are both
optional. The max and digits arguments operate as described above for Sequential_dir. An additional
argument, extension, specifies what extension should be added to the filename. The extension should include
the separator character (a period is the most common separator), and defaults to .comma. The id fragment
that Sequential_file generates is the filename, stripped of its extension.

Derived_file creates a filename from the contents of a doc element or the return value of a method. The
derive_from argument is required, and specifies the element or method that will be called to generate the
filename −− this works like the shortcut syntax: $doc−><derive_from>(). The optional extension
argument defaults to .comma. Here is an example:

<store>
 <name>main</name>
 <location>Derived_file: 'derive_from','foo', 'extension', '.xml'</location>
</store>

Read_only_file is used for collections of documents that will be by some non−Comma tool. Parts of Comma
use Read_only_file to read config files, which are always edited by hand. Trying to write to a location chain
that uses Read_only_file will result in an error. The optional extension argument specifies the extention that
is present on the files, and defaults to .comma. Here is the definition used by HTTP_Upload_Config, part of
the HTTP_Upload package:

<store>
 <name>main</name>

XML::Comma Guide

Standard _file Modules 50

 <base>config</base>
 <location>Read_only_file:'extension','.config'</location>
</store>

Index_Only Storage

A special location module exists for documents that should only be indexed, not stored.

It can be convenient to use the Comma API to manipulate data that doesn't need to have the longevity or
additional features that come with file−system storage. The development of this functionality was motivated
by a desire for what might be called "sortable short−term log files." For example, say you're tracking web
page accesses by registered users, and the questions your code needs to ask mostly look something like "how
many pages has this user visited in the last 10 minutes?" Updating a traditional, full−fledged Doc on each
page view is pretty heavy−weight. It would be better to have a way to perform a simple mapping between Doc
objects and database rows. Here's a simple example Def:

<DocumentDefinition>
 <name>test_index_only</name>

 <element><name>time</name></element>
 <element><name>string</name></element>

 <store>
 <name>main</name>
 <location>Index_Only:'index_name','main'</location>
 </store>

 <index>
 <name>main</name>
 <field><name>time</name></field>
 <field><name>string</name></field>
 </index>
</DocumentDefinition>

Mostly, this works as one would expect. Normal Comma method calls are used to create Doc objects and
store() them. You can read() an individual Doc, or use index iterator() and count() methods to get at
collections and totals. Doc read() does come with a few caveats. Only have access to simple index fields −−
no collections or code−constructed fields −− is available. And it's not possible to store Blobs or to use storage
iterators.

The doc_ids that are generated are sequential integers, and are not 0−padded.

Output Filters

Like location chains, output chains influence how a document is written to long−term storage. Whereas a
location chain determines "where" a document is stored, an output chain determines the "format" of the stored
doc.

There is an implicit output format present for every single document: plain text. Document storage always
starts with the generation of a plain−text, xml−marked−up representation of the doc (the same thing that is
produced by a call to to_string()), and document retrieval always ends with the parsing of that plain text
representation. But various output filters can be added to the storage/retrieval process, with each one
influencing what bytes actually get written out to disk.

XML::Comma Guide

Index_Only Storage 51

The Gzip output filter compresses the doc using the gzip algorithm. Large documents can be compressed
quite effectively. Gzip takes no arguments and operates as simply as possible. Other tools that understand
gzip compression/decompression −− zcat, for example −− can be used to examine or process the stored docs
independent of Comma.

<store>
 <name>gzipped</name>
 <location>Sequential_file</location>
 <output>Gzip</output>
</store>

The Twofish filter uses the Twofish symmetric encryption algorithm (implemented by Abhijit Menon−Sen's
Crypt::Twofish module) to encrypt the storage output. Twofish needs an argument, key, specifying the
encryption/decryption key to be used. An additional argument, key_hash, is also required. The key_hash is
used to verify that the key supplied is correct. This is important because encrypting data with a mis−typed (or
otherwise wrongly−supplied) key can cause much heartache and difficulty. (And keys can −− and likely
should −− be dynamically supplied, so there is often opportunity to mis−type a key.)

The key_hash is produced by generating an md5 digest of the key, and should be supplied as a hex string.
The following one−liner spits out the key_hash for the key 'foo':

perl −MDigest::MD5 −e 'print Digest::MD5::md5_hex("foo") . "\n"'

And here is an example of a store that first gzips, then Twofish encrypts, its docs:

<store>
 <name>gzipped_and_encrypted</name>
 <location>Sequential_file</location>
 <output>Gzip</output>
 <output>Twofish: 'key', 'an encryption p',
 'key_hash', '67d8db90c079ae74967a1b750b87525f'</output>
</store>

The HMAC_MD5 output filter uses Gisle Aas's Digest::HMAC_MD5 module to fingerprint each of its stored
docs. Like the Twofish filter, HMAC_MD5 requires key and key_hash arguments. (The key_hash is
generated in the same way as for Twofish.) Here is a store that gzips, Twofish encrypts and HMACs its docs:

<store>
 <name>five</name>
 <base>gz_hmac_twofish</base>
 <location>Sequential_file:'max',10,'extension','.gz_hmac_encrypt'</location>

 <output>Gzip</output>

 <output>HMAC_MD5: 'key', 'an−hmac−sillykey',
 'key_hash', '7c116a20dcc378de2afb4cc9955a2187'</output>

 <output>Twofish: 'key', 'another−sillykey',
 'key_hash', '6ae8eaeaa226a03a46d79a359ab00db0'</output>
</store>

As mentioned above, keys will often need to be supplied when Comma applications are loaded, rather than
hard−coded into defs. (Leaving the key in the def in plain text is a potential security problem.) Here is a toy
storage definition that prompts the user to enter the key on the command line when the def is loaded:

<store>

XML::Comma Guide

Index_Only Storage 52

 <name>four</name>
 <base>test/four</base>
 <location>Sequential_file:'max',10,'extension','.encrypt'</location>
 <output>
 <![CDATA[
 Twofish:
 'key' => do { print "key ('1234'): "; my $key=<>; chop $key; $key },
 'key_hash' => '81dc9bdb52d04dc20036dbd8313ed055'
]]>
 </output>
</store>

Writing New Output and Location Modules

Hmmm. See the text file: Storage/Location/location_modules.doc for basic location module theory and
practice. Output filters are much simpler −− use the source, Luke.

XML::Comma Guide

Writing New Output and Location Modules 53

Blob Elements
A blob is an element that is stored separately from the rest of a Doc's content. Comma borrows the term (and
to some extent the concept) of blobs from the database world, where BLOB originated as an acronym for
"Binary Large Object." A blob element is conceptually part of a Doc, but −− as a matter of implementation −−
is stored so that it does not need to be parsed when a doc is read and does not need to have its content
escaped/unescaped on set() and get(). In addition, blobs are often stored transparently in individual files, so
that their content can be directly accessed by non−comma, filesystem−centric tools.

The API for manipulating blob elements is the same as that for manipulating normal elements, with a few
additions. Here is a simple document with a regular and a blob element defined:

<DocumentDefinition>
 <name>two_easy_elements</name>

 <element><name>regular_el</name></element>
 <blob_element><name>blob_el</name></blob_element>

 <store>
 <base>te</base>
 <location>Sequential_file</location>
 </store>
</DocumentDefinition>

Our blob_el can be treated just like our regular_el: set() and get() work exactly as one would expect.
When a two_easy_elements doc is stored, It will look something like this:

<two_easy_elements>
<regular_el>whatever</regular_el>
<blob_el><_comma_blob>/usr/local/comma/docs/te/0001−cuPhU10z</_comma_blob></blob_el>
</two_easy_elements>

Where a to_string()'ed normal element has content, a blob element has a pointer. What the pointer means
(hence, how and where the content is actually stored) is dependent on the particular location module that did
the storing. In most cases blob content is stored in a file in the same directory as the doc, with a filename
consisting of the doc's id as a leading string, then a dash, then a randomly generated alphanumeric string, then
an optional extension.

In addition to being set(), a blob element can be handed content using set_from_file(). This makes using a
blob to store information that is already available on disk quite simple:

my $filename = '~/pictures/snowy_day.jpg';
$blob_el−>set_from_file ($filename);

The get_location() method returns the pointer information for the blob. Note that get_location will return an
empty string if the blob is unset, and that because comma jumps through some hoops to store blob content in
temporary files between a set() and a store(), the pointer returned by get_location() may not be what you
expect in all situations, and shouldn't be treated as a persistent piece of data.

display our jpg to the screen
my $filename = $blob_el−>get_location() ||
 die "no pretty picture available";

`display $filename`;

Blob Elements 54

Blob elements can be validate()'ed, and have hooks of type set_hook, read_hook and validate_hook
attached to them. They also accept a unique set_from_file hook, which is like a set_hook but is triggered by
the set_from_file() method.

The extension that is appended to a blob element's filename during storage is specified with an extension def
element:

<DocumentDefinition>
 <name>two_easy_elements</name>

 <element><name>regular_el</name></element>
 <blob_element>
 <name>blob_el</name>
 <extension>'.jpg'</extension>
 </blob_element>

 <store>
 <base>te</base>
 <location>Sequential_file</location>
 </store>
</DocumentDefinition>

The extension itself is produced by eval'ing the extension specifier each time the element is stored. This
makes it possible to have the extension vary depending on the content of the blob. For a (complex) example of
this −− as well as for a generally useful element that can be defname'ed into any context −− see the file
t/defs/Comma_Standard_Image.def in the comma distribution.

XML::Comma Guide

Blob Elements 55

Grouping and Sorting Elements
Comma provides a pair of methods that rearrange the order of elements in a doc or nested element.

Prettifying: group_elements()

Calling the group_elements() method of a doc or nested element pulls together all sub−elements of the same
type, and arranges these groupings of elements according to the order in which they are listed in the doc or
nested element's def. The order of the elements in each group relative to one another remains unchanged.
Often this method is used to "prettify" a doc so that it will be more easily readable or hand−editable. The
group_elements() method returns the object on which it was called.

<!−− a simple def −−>
<DocumentDefinition>
 <name>group_test</name>
 <element><name>a</name></element>
 <element><name>b</name></element>
 <plural>'a','b'</plural>
</DocumentDefinition>

<!−− and a doc −−>
<group_test>
<a>0
1
<a>2
3
</group_test>

assume the above is '$doc' −− call group_elements and to_string() from some
code...
print $doc−>group_elements()−>to_string();

will print out:
<group_test>
<a>0
<a>2
1
3
</group_test>

Sorting: sort_elements()

The sort_elements() method is much more flexible and powerful. When called with no arguments, it
rearranges all of the elements in a container according to a defined sort_sub. Like elements(), it accepts an
optional list of tags as arguments; if called with arguments it rearranges only the specified types of elements.

The sort_sub is specified in one of two places: sort_elements() first looks in the definition of the first callee
for a sort_sub, then in the definition of the caller. If it doesn't find a sort_sub in either def, the method throws
an error. The sort_elements() method (again, for cognitive compatibility with elements() returns a sorted
array −− or reference −− of elements).

Here is a document definition showing four slightly different uses of a sort_sub. The simple element's sort
would be controlled by the document's sort_sub (which appears near the end of the definition), as it doesn't
have one of its own. The other three elements all define sort_sub elements that (presumably) are tailored for

Grouping and Sorting Elements 56

the types of data they will contain and the ways in which they will be used.

<DocumentDefinition>
 <name>sort_test</name>

 <element><name>simple</name></element>

 <element>
 <name>self_sorting_alpha</name>
 <sort_sub><![CDATA[sub ($$) { $_[1]−>get() cmp $_[0]−>get(); }]]>
 </element>

 <element>
 <name>self_sorting_numeric</name>
 <sort_sub><![CDATA[sub ($$) { $_[1]−>get() <=> $_[0]−>get(); }]]>
 </element>

 <nested_element>
 <name>self_sorting_nested</name>
 <element><name>rank</name></element>
 <sort_sub><![CDATA[sub ($$) { $_[0]−>rank() <=> $_[1]−>rank(); }]]>
 </nested_element>

 <plural>'simple','self_sorting_alpha','self_sorting_numeric','self_sorting_nested'</plural>
 <sort_sub><![CDATA[sub ($$) { $_[0]−>get() <=> $_[1]−>get(); }]]>
</DocumentDefinition>

Each sort_sub string is turned into a code reference (by an eval statement), then passed to a sort statement
whenever sort_elements() is called. Note that you must use the prototyped form of subroutine definition for
the sort statement to work properly. You may be more used to using the special variables $a and $b −− the
($$) prototype simply tells sort to use normal subroutine parameters instead: $_[0] and $_[1].

the above def in use
my $doc = XML::Comma::Doc−>new (type=>'sort_test');
$doc−>add_element('simple')−>(1);
$doc−>add_element('simple')−>(23);
$doc−>add_element('simple')−>(11);
$doc−>add_element('self_sorting_alpha')−>('ccc');
$doc−>add_element('self_sorting_alpha')−>('aaa');
$doc−>add_element('self_sorting_alpha')−>('bbb');
$doc−>add_element('self_sorting_numeric')−>(10);
$doc−>add_element('self_sorting_numeric')−>(11);
$doc−>add_element('self_sorting_numeric')−>(3);
$doc−>add_element('self_sorting_nested')−>ranked(7);
$doc−>add_element('self_sorting_nested')−>ranked(5);
$doc−>add_element('self_sorting_nested')−>ranked(10);

do some sorts
$doc−>sort_elements ('simple');
$doc−>sort_elements ('self_sorting_alpha');
$doc−>sort_elements ('self_sorting_numeric');

do a sort and actually use the return value
print join "\n", map { "rank of " . $_ . ": " . $_−>rank() }
 $doc−>sort_elements ('self_sorting_nested');

XML::Comma Guide

Grouping and Sorting Elements 57

Error Handling and Logging
Comma includes error propogation facilities and some basic logging functionality. The log_file configuration
variable specifies a file for Comma to log to.

Each line in the log file is made up of three fields, separated by spaces: 1) the unix time, 2) the pid, and 3) the
error string. Most errors that are thrown as part of Comma's internal workings will have an error string made
up a standard error name, then two dashes, then more information about the error, then the file and line
number of the caller. For example:

1000838058 1584 STORE_ERROR −− no store given to first−time Doc−>store() at t/storage.t line 167

Two public methods enable writing to the log file. XML::Comma::Log−>err() takes an error name and a
description string as arguments, writes a line to the log, then exits with a die. The error name should be a
short, arbritrary string which contains no spaces and identifies the error. All errors thrown by internal comma
code use all−caps error names, which makes the log files easy to read, but that's only a convention. The
description string can be as long as desired, and should contain more specific information about the error
(newline characters will be replaced with spaces when the string is written to the log file.) A file and
line−number from which the err() method was called will be included in the output.

XML::Comma::Log−>warn() takes a string, appends the text WARNING −− to it, and writes a line to the
log. It doesn't die or record the file and line−number of the caller.

non−fatal, informational logging
XML::Comma::Log−>warn ("whoa, we might have problems");

throw a fatal error
XML::Comma::Log−>err ("FAKE_ERROR", "we have broken down");

Error Handling and Logging 58

Network Transfer
Comma ships with a client/server library for transferring Docs across the network. The tranfer operations are
built on top of the HTTP protocol, and the server side of the library is designed to run as a mod_perl handler
inside Apache. The client side can be used programmatically, just like any other part of the Comma system.

Here is a bit of example code:

my $t = XML::Comma::Pkg::Transfer::HTTP_Transfer−>new
 (target => 'https://remote.server.com/util/transfer');

if (! $t−>ping()) {
 die "couldn't contact the remote server";
}

my $key = 'article|main|0012';
my $article = XML::Comma::Doc−>read ($key);
if ($article−>comma_hash ne $t−>get_hash($key)) {
 print "transferring: $key ... ";
 $t−>put ($article);
 print "ok\n";
} else {
 print "hash matched for $key";
}

Client Methods

The client is an instance of the XML::Comma::Pkg::Transfer::HTTP_Transfer class. The constructor for
this class takes one optional argument, target, which specifies the URL to which the client will connect.
The available client methods are: ping(), put(), put_push(), get_hash() and get_and_store().

The ping() tests the connection to the server. It returns 1 if the client is able to exchange data with the server
and returns undef otherwise.

The put() and put_push() methods transfer docs from the client to the server. Both methods take a doc object
as their argument. A doc that is put() across the network is stored on the server using the same store and id as
the local doc. (This implies that a newly−created and not−yet−stored doc may not be put()ted.) A doc that is
put_push()ed across the network will be stored on the server in a new location −− as if it were
newly−created. The put_push() method takes an optional second argument, a store_name indicating what
store to use on the server. If that argument is omitted, the doc's store is used. Both methods return the doc id
under which the doc was stored (though this is presumably already known in the put() case). Both methods
throw an error if they encounter unrecoverable network difficulties or problems on the remote server.

The get_hash() method gets a document's comma_hash from the remote server. The method takes the three
"retrieval" arguments −− either paramaterized as a type=>, store=> and id=> or stringified as a key. A call to
get_hash() returns the key on success, returns undef if the requested doc is not found on the remote server,
and throws an error if it encounters severe difficulties across the network.

The get_and_store() method takes the same "retrieval" arguments as get(), but pulls the remote doc across
and stores it on the local server. It returns a read−only copy of the doc on success, and throws an error on
failure.

Network Transfer 59

The HTTP::Transfer library is not designed to support transferring documents bi−directionally within
a single store. All kinds of potential problems will arise if one attempts to do that.

Server <Location /util/transfer> Configuration

To bring up an HTTP_Transfer server, an Apache handler must be configured for a particular <Location>.
The following code shold be all that is required for a basic installation.

<Location /util/transfer>
 SetHandler perl−script
 PerlHandler XML::Comma::Pkg::Transfer::HTTP_Transfer
</Location>

Access Control and SSL Encryption

Apache's extensive access control facilities can be used to control usage of an HTTP_Transfer server. The
Apache documentation describes how to limit access by connection−oriented criteria such as IP address.

The HTTP_Transfer library is also SSL−aware, allowing data to be sent across the network in an encrypted
form. Apache must be configured with SSL support for this option to be available. On the client side, all that
is required is to specify a target url that begins with https.

Client SSL certificates can be used to further limit access to the server. Apache must be configured so that it
has access to a "Certificate Authority" public certificate and with the following two SSL options:

SSLVerifyClient require
SSLVerifyDepth 1

This will limit access to clients that hold certificates signed by the "Certificate Authority's" private key. The
following two constructor arguments can be used to make a certificate/key pair available to the
HTTP_Transfer client.

use client certificate:
 https_cert_file => '/tmp/cert.pem'
 https_key_file => '/tmp/key.pem'

example
my $t = XML::Comma::Pkg::Transfer::HTTP_Transfer−>new
 (target => 'https://remote.server.com/util/transfer',
 https_cert_file => '/path/cert.pem',
 https_key_file => '/path/key.pem');

The key file should not be passphrase encrypted. The Crypt::SSLeay library that HTTP_Transfer relies on
does not cache the key, so the passphrase must be re−typed on each connection if an encrypted key is used.

XML::Comma Guide

 Server <Location /util/transfer> Configuration 60

Reference: Defs
Document definitions, which are Comma documents like any other, are themselves constrained by a
definition. This "bootstrap" definition is often useful as a reference.

<DocumentDefinition>
 <name>DocumentDefinition</name>

 <element><name>name</name></element>
 <element><name>ignore_for_hash</name></element>
 <element><name>plural</name></element>
 <element><name>required</name></element>

 <element><name>validate_hook</name></element>
 <element><name>document_write_hook</name></element>
 <element><name>def_hook</name></element>
 <element><name>sort_sub</name></element>

 <nested_element>
 <name>method</name>
 <element><name>name</name></element>
 <element><name>code</name></element>
 <required>'name','code'</required>
 </nested_element>

 <nested_element>
 <name>element</name>
 <element><name>name</name></element>
 <element><name>validate_hook</name></element>
 <element><name>set_hook</name></element>
 <element><name>default</name></element>
 <element><name>macro</name></element>
 <element><name>defname</name></element>
 <element><name>sort_sub</name></element>
 <plural>'validate_hook','set_hook','macro'</plural>
 <required>'name'</required>
 </nested_element>

 <nested_element>
 <name>blob_element</name>
 <element><name>name</name></element>
 <element><name>extension</name></element>
 </nested_element>

 <nested_element>
 <name>nested_element</name>
 <element><name>name</name></element>
 <element><name>defname</name></element>

 <element><name>macro</name></element>
 <element><name>plural</name></element>
 <element><name>required</name></element>
 <element><name>ignore_for_hash</name></element>
 <element><name>validate_hook</name></element>
 <element><name>sort_sub</name></element>

 <nested_element>
 <name>element</name>
 <defname>DocumentDefinition:element</defname>
 </nested_element>

Reference: Defs 61

 <nested_element>
 <name>blob_element</name>
 <defname>DocumentDefinition:blob_element</defname>
 </nested_element>

 <nested_element>
 <name>nested_element</name>
 <defname>DocumentDefinition:nested_element</defname>
 </nested_element>

 <nested_element>
 <name>method</name>
 <defname>DocumentDefinition:method</defname>
 </nested_element>

 <plural>
 'macro',
 'plural',
 'required',
 'ignore_for_hash',
 'validate_hook',
 'element',
 'blob_element',
 'nested_element',
 'method',
 </plural>
 <required>'name'</required>
 </nested_element>

 <nested_element>
 <name>store</name>
 <element><name>name</name></element>
 <element><name>location</name></element>
 <element><name>output</name></element>
 <element><name>root</name></element>
 <element><name>base</name></element>
 <element>
 <name>file_permissions</name>
 <default>664</default>
 </element>
 <element><name>pre_store_hook</name></element>
 <element><name>post_store_hook</name></element>
 <element><name>erase_hook</name></element>
 <element><name>index_on_store</name></element>
 <plural>qw(location output
 pre_store_hook post_store_hook
 erase_hook
 index_on_store)</plural>
 <required>'name','base','location'</required>
 </nested_element>

 <nested_element>
 <name>index</name>
 <element><name>name</name></element>
 <!−− 'store' will default to self−>element('name')−>get() −
 (note, this is handled by the Store−>store() method in
 the internals) −−>
 <element><name>store</name></element>
 <!−− doc_id_sql_type SHOULD NOT BE CHANGED without completely
 dropping and recreating a given index's database (or otherwise
 altering the database structure outside of Comma). ** there is

XML::Comma Guide

Reference: Defs 62

 no automatic change of this to match a def ** −−>
 <element>
 <name>doc_id_sql_type</name>
 <default>VARCHAR(255)</default>
 </element>
 <nested_element>
 <name>field</name>
 <element><name>name</name></element>
 <element><name>code</name></element>
 <element>
 <name>sql_type</name>
 <default>VARCHAR(255)</default>
 </element>
 <required>'name'</required>
 </nested_element>
 <nested_element>
 <name>collection</name>
 <element><name>name</name></element>
 <element><name>code</name></element>
 </nested_element>
 <nested_element>
 <name>sort</name>
 <element><name>name</name></element>
 <element><name>code</name></element>
 <nested_element>
 <name>clean</name>
 <defname>DocumentDefinition:index:clean</defname>
 </nested_element>
 <required>'name'</required>
 </nested_element>
 <nested_element>
 <name>textsearch</name>
 <element><name>name</name></element>
 <element><name>defer_on_update</name></element>
 <required>'name'</required>
 </nested_element>
 <nested_element>
 <name>sql_index</name>
 <element><name>name</name></element>
 <element><name>unique</name></element>
 <element><name>fields</name></element>
 <required>'name','fields'</required>
 </nested_element>
 <element>
 <name>default_order_by</name>
 <default>doc_id</default>
 </element>
 <nested_element>
 <name>order_by_expression</name>
 <element><name>name</name></element>
 <element><name>expression</name></element>
 <required>'name','expression'</required>
 </nested_element>
 <nested_element>
 <name>clean</name>
 <element><name>to_size</name></element>
 <element><name>order_by</name></element>
 <element><name>size_trigger</name></element>
 <element><name>erase_where_clause</name></element>
 </nested_element>
 <element><name>index_hook</name></element>
 <element><name>stop_rebuild_hook</name></element>

XML::Comma Guide

Reference: Defs 63

 <nested_element>
 <name>method</name>
 <defname>DocumentDefinition:method</defname>
 </nested_element>
 <plural>qw(field
 collection
 sort
 textsearch
 sql_index
 order_by_expression
 index_hook
 stop_rebuild_hook
 method)</plural>
 <required>'name'</required>
 </nested_element>

 <plural>
 'element',
 'nested_element',
 'blob_element',
 'method',
 'store',
 'index',
 'document_write_hook',
 'plural',
 'required',
 'ignore_for_hash',
 'validate_hook',
 </plural>

</DocumentDefinition>

XML::Comma Guide

Reference: Defs 64

Reference: Hooks
def_hook −− any def. The def_hook is unlike the other hooks in its operation. Rather than being defined as
part of a document definition and run during later operations, the def_hook is run as part of the loading of the
def itself. This hook is designed to allow a def to create dynamic structures that will be available to its various
methods, hooks and elements. The contents of the def_hook element should be a block of code suitable for
evaling. Any error thrown during the eval will cause a DEF_HOOK_ERR to be propogated.

document_write_hook ($doc) −− any doc. The to_string() method triggers the execution of any defined
hooks of this type, and any error thrown by one of these hooks will abort the to_string operation. This hook is
passed the doc that it is attached to as its only argument.

erase_hook ($doc, $store, $location) −− any store. This hook is run at the beginning of an erase operation
(triggered by doc erase() and move() methods). Any thrown errors abort the erase operation and cause a
STORE_ERROR to be propogated. This hook is passed the doc being erased, the store object, and the doc
location.

index_hook ($doc, $index) −− any index. This hook is run at the beginning of an index_update(). If an
index_hook throws an error, the update halts and the call to index_update() returns undef (no error is
propogated, however). This hook is passed the doc that is the source of the update and the index object as its
two arguments.

post_store_hook ($doc, $store, \%store_arguments) −− any store. This hook is run at the very end of a
store operation (triggered by doc store(), move(), and copy() methods). All hooks are run, then the doc is
unlocked, then −− if necessary −− the first of any errors that might have been encountered as the hooks were
run is thrown. This hook is passed the doc being stored and the store object as its arguments.

pre_store_hook ($doc, $store, \%store_arguments) −− any store. This type of hook is run at the very
beginning of a store operation (triggered by doc store(), move(), and copy() methods). If any pre_store_hook
throws an error, the store operation is aborted and a STORE_ERROR is propogated. This hook is passed the
doc being stored and the store object as its arguments.

stop_rebuild_hook ($doc, $index) −− any index. This hook is run during an index rebuild(), after each doc
is processed. The hook should return a true value to indicate that the rebuild operation has completed (and,
conversely, a false value to indicate that the rebuild should continue). This hook is passed the doc that −− if
the process continues −− will next be added to the index and the index object itself as its two arguments.

validate_hook ($element, [$content]) −− any nested element, non−nested element, or doc. The element
validate(), validate_content(), set(), and append() methods trigger the execution of these hooks, as does the
nested element validate() method. If any validate_hook() throws an error, the validate operation is halted and
a BAD_CONTENT or VALIDATE_ERROR is propogated. The hook is passed one or two arguments: the
element to which the hook is attached and (for non−nested elements) the content to be validated.

set_hook ($element, $content_reference, \%set_arguments) −− non−nested elements and blob elements.
This hook is triggered by a call to an element's set() method. Any set_hooks defined for an element is run
after any validate_hooks and before the actual set operation takes place. A set_hook receives, as its second
argument, a reference to the content that was passed to the set() method, enabling the hook to modify the
content, if necessary. If any set_hook dies, an error is thrown and the set is aborted.

Reference: Hooks 65

set_from_file_hook ($element, $filename, \%set_arguments) −− blob elements. This hook is exactly
analagous to the set_hook described above, except that it is unique to blob elements, is triggered by the blob
element set_from_file() method, and is passed the filename that set_from_file() receives instead of a content
reference. If you want to intercept all "set" operations on a blob element, you must define both of these hooks.

read_hook() −− any doc or element. This hook is called when a doc or element is "read in" from storage,
during a read() or retrieve(). After the system creates and initializes the element (including any sub−elements
or content that are read in), any defined read_hooks are called. No arguments are passed. This hook is
sometimes needed as a complement to a set_hook, which is only called by a set() method invocation and not
upon reading an element in from storage. Note that a read_hook can only be called on an element that
"exists" in the stored doc: empty elements aren't stored, and so they can't be read in and hook'ed.

XML::Comma Guide

Reference: Hooks 66

Reference: Perl API (Methods and Objects)
XML::Comma

<all configuration variables readable via methods>♦
$lock_interface = XML::Comma−>lock_singlet()♦

undef = $lock_interface−>wait_for_hold ($string);◊
undef = $lock_interface−>release_hold ($string);◊

•

XML::Comma::Doc
$doc = XML::Comma::Doc−>new (type =>)♦
$doc = XML::Comma::Doc−>new (block =>)♦
$doc = XML::Comma::Doc−>new (file =>)♦
$doc = XML::Comma::Doc−>retrieve (key, [timeout=><seconds>])♦
$doc = XML::Comma::Doc−>retrieve (store =>, type =>, id =>, [timeout=><seconds>])♦
$doc || undef = XML::Comma::Doc−>retrieve_no_wait (key)♦
$doc || undef = XML::Comma::Doc−>retrieve_no_wait (store =>, type =>, id =>)♦
$doc = XML::Comma::Doc−>read (key)♦
$doc = XML::Comma::Doc−>read (<retrieve arguments>)♦
$doc = $doc−>get_lock ([timeout=><seconds>]);♦
$doc || undef = $doc−>get_lock_no_wait();♦
$string = $doc−>to_string()♦
$string = $doc−>comma_hash()♦
$self = $doc−>store (store=>, [keep_open=>], [no_hooks=>], [args...])♦
$self = $doc−>erase()♦
$self = $doc−>copy()♦
$self = $doc−>copy() (<store arguments>)♦
$self = $doc−>move()♦
$self = $doc−>move() (<store arguments>)♦
$store = $doc−>doc_store()♦
$string = $doc−>doc_location()♦
$string = $doc−>doc_id()♦
$string = $doc−>doc_key()♦
$string = $doc−>doc_source_file()♦
$bool = $doc−>doc_is_locked()♦
$int = $doc−>doc_last_modified()♦
$doc = $doc−>index_update (index=>$index)♦
$doc = $doc−>index_remove (index=>$index)♦

•

all elements
$string = $el−>tag()♦
$string = $el−>tag_up_path()♦
$def = $el−>def()♦
$return_val = $el−>method ($name, [@args...])♦
null = $el−>set_attr ($name => $value, [$name => $value ...]);♦
$string = $el−>get_attr ($name);♦
$hash_ref = $def−>def_pnotes();♦
@names = $def−>applied_macros();♦
1/undef = $def−>applied_macros (@names);♦

•

blob elements
$string = $el−>set($string)♦
$string = $el−>get()♦
'' = $el−>set_from_file ($filename)♦

•

Reference: Perl API (Methods and Objects) 67

'' = $el−>validate()♦
$string = $el−>get_location()♦

simple elements
$string = $el−>get([unescape=>], [%args])♦
$string = $el−>get_without_default()♦
$string = $el−>set ($string, [escape=>], [%args])♦
$string = $el−>append ($more_string)♦
$string = $el−>validate()♦
$string = $el−>validate_content ($string)♦
1 = $el−>cdata_wrap();♦

•

nested elements
@els/[] = $el−>elements ([@tags])♦
$el = $el−>element ($tag)♦
$el = $el−>add_element ($tag)♦
$el = $el−>delete_element ($tag)♦
@strings/[] = $el−>elements_group_get ($tag)♦
@strings/[] = $el−>elements_group_add ($tag, @strings)♦
@els/[] = $el−>elements_group_delete ($tag, @strings)♦
$bool = $el−>elements_group_lists ($tag, $string)♦
$bool = $el−>element_is_plural ($tag)♦
$bool = $el−>element_is_defined ($tag)♦
$bool = $el−>element_is_nested ($tag)♦
$bool = $el−>element_is_blob ($tag)♦
$bool = $el−>element_is_required ($tag)♦
'' = $el−>validate()♦
[DEPRECATED] '' = $el−>validate_structure()♦
@els = $el−>get_all_blobs()♦
$el = $el−>group_elements();♦
@els/[] = $el−>sort_elements ([@tags])♦

•

XML::Comma::Def
$def = XML::Comma::Def−>read (name =>)♦
@names = $def−>store_names();♦
$store = $def−>get_store ($name);♦
@names = $def−>index_names();♦
@names = $def−>method_names();♦
$store = $def−>get_index ($name);♦
$hash_ref = $def−>def_pnotes();♦
$code_ref = $def−>add_hook ($hook_type, $string || $code_ref);♦
$code_ref = $def−>add_method ($name, $string || $code_ref);♦
$code_ref || undef = $def−>method_code ($name);♦
@return/[] = $def−>method ($name, @args);♦
@names = $def−>applied_macros();♦
1/undef = $def−>applied_macros (@names);♦
@els/[] = $def−>def_sub_elements();♦
$el = $def−>def_by_name ($element_name);♦
1/undef = $def−>is_required();♦
1/undef = $def−>is_plural();♦
1/undef = $def−>is_nested();♦
1/undef = $def−>is_blob();♦
1/undef = $def−>is_ignore_for_hash();♦

•

XML::Comma::Indexing::Index•

XML::Comma Guide

Reference: Perl API (Methods and Objects) 68

@names = $index−>field_names();♦
@names = $index−>sort_names(); [DEPRECATED]♦
@names = $index−>collection_names();♦
@names = $index−>textsearch_names();♦
@names = $index−>method_names();♦
$type_name = $index−>collection_type ($collection_name);♦
$iterator = $index−>iterator ([%args]);♦
$iterator/undef = $index−>single ([%args]);♦
$doc/undef = $index−>single_read ([%args]);♦
$doc/undef = $index−>single_retrieve ([%args]);♦
$int = $index−>count ([%args]);♦
$int = $index−>last_modified_time ([$sort_name, $sort_string]);♦
$val = $index−>aggregate (function=> [%args]);♦
'' = $index−>rebuild ([verbose=>'1'|'0',workers=>$processes_num,size=>$size_num]);♦
'' = $index−>clean();♦
'' = $index−>get_dbh();♦

XML::Comma::Indexing::Iterator
$iterator = $iterator_refresh() ([$limit_number], [$limit_offset]);♦
$iterator/false = $iterator−>iterator_next();♦
$bool = $iterator−>iterator_has_stuff();♦
$string = $iterator−>iterator_select_returnval();♦
$doc = $iterator−>retrieve_doc();♦
$doc = $iterator−>read_doc();♦
$string = $iterator−>doc_key();♦
$string = $iterator−>doc_id();♦
$return_value = $iterator−>$field/$method ([@args]);♦

•

XML::Comma::Log
<thrown error/die> = XML::Comma::Log−>err ($error_string, $info_string);♦
'' = XML::Comma::Log−>warn ($string);♦
'' = XML::Comma::Log−>log ($string/$error);♦

•

XML::Comma::Storage::Store
$id_string = $store−>first_id();♦
$id_string = $store−>last_id();♦
$id_string = $store−>next_id ($id_string);♦
$id_string = $store−>prev_id ($id_string);♦
$directory = $store−>base_directory();♦

•

XML::Comma::Storage::Iterator
$iterator = XML::Comma::Storage::Iterator−>new (store=>$store, size=>$num, pos=><'+' |
'−'>;

♦

$num = $iterator−>length();♦
$num = $iterator−>index();♦
$num = $iterator−>set($num);♦
$num = $iterator−>next_id();♦
$num = $iterator−>prev_id();♦
$num = $iterator−>next_retrieve();♦
$num = $iterator−>prev_retrieve();♦
$num = $iterator−>next_read();♦
$num = $iterator−>prev_read();♦
$num = $iterator−>doc_id();♦

•

XML::Comma::Util
$first_element = trim (@strings_to_trim);♦

•

XML::Comma Guide

Reference: Perl API (Methods and Objects) 69

@trimmed_strings = trim (@strings_to_trim);♦
$bool = array_includes (@array, $string);♦
@array/[] = arrayref_remove_dups ($array_ref);♦
@array/[] = arrayref_remove ($array_ref, @els/[]);♦
@array = flatten_arrayrefs (@arrays/[] [...]);♦
$escaped_string = XML_basic_escape ($string);♦
$unescaped_string = XML_basic_unescape ($string);♦
$escaped_string = XML_smart_escape ($string); # ignores entities♦
$escaped_string = XML_bare_amp_unescape ($string); # ditto♦
'' = dbg (@arrays/[] [...]);♦
($name, @args) = name_and_args_eval ($string);♦
$string = random_an_string ($length);♦

XML::Comma Guide

Reference: Perl API (Methods and Objects) 70

Appendix: Table Structure of Index Databases
Each Comma index creates (and uses) at least one table in the SQL database. All of these tables are kept track
of by an index_tables table. It is usually possible for a programmer or system administrator to remain
blissfully ignorant of the information presented here. This section is written for the curious and the unlucky.

The index_tables Table

The index_tables table contains a record for each database table that has been created as part of an index's
backing store. The fields are as follows:

_comma_flag•
_sq•
doctype•
index_name•
table_name•
table_type•
last_modified•
sort_spec•
textsearch•
collection•
index_def•

The _comma_flag field is used by parts of the system that need to mark a table as in use. The rebuild()
method, for example, tags any tables that it is working on, and will refuse to begin work if any tables for an
index appear to be so tagged.

The _sq field is a unique, ascending integer sequence, and is used to generate unique names for all the tables
that Comma creates.

The doctype and index_name fields together identify which Comma index a table "belongs" to.

The table_name field gives the name of the table. When a new table is created, a name is generated by
appending an underscore and the next valid _sq integer to the first few letters of the doctype.

The table_type field is an integer indicating what kind of table this is (see below).

The last_modified field indicates when a table was last changed, but is currently not much used.

Only one of the sort_spec, textsearch, collection and index_def fields is used by any single record: these fields
hold extra information relevant to the various kinds of tables.

Table Type 1: The Data Table

Every index has a Data table. Each row in the data table represents a single record in the index. The table has
three standard columns: _comma_flag holds a status value, _sq holds a short, unique identifier that can be
used to refer back to this record, and doc_id the doc_id of the document this record is drawn from. The rest
of the columns in the table are created from the fields and collections defined by the index; each is named the
same as the field, typed according to the field's sql_type, and holds the contents of that field or collection for

Appendix: Table Structure of Index Databases 71

the record in question. Field columns simply hold the scalar value returned by the field's element or method
call. Collection columns hold a string consisting of all of the values returned by the element or method call,
each blocked between two 'pipe' characters, concatenated all together.

Table Type 2: The 'many tables' Table

An index may have as many 'many tables' collection tables as the database permits. Each table is created on
demand when an update encounters a new value in the collection.

Each table contains only two columns, the familiar _comma_flag field used for coordintation and locking
by various pieces of the indexing code, and a doc_id column. The table simply keeps track of the documents
that belong in that sort; logical joins are used to select subsets of records that match sort criteria.

Table Types 3 and 4: Textsearch Index and Defers Tables

Each textsearch defined by an index uses two tables. The main table, called a textsearch_index_table by the
system internals, stores an inverted index, with each record in the table mapping a word to a packed array
containing data table _sq keys. The second table −− the textsearch_defers table −− contains a list of actions
that have been performed on the index since the last sync_deferred_textsearches() call.

Table Type 5: The 'binary table' Table

A 'binary table' collection table is created for each binary−table−typed collection in each Index. Each of these
tables contains three columns, the familiarl _comma_flag field, a doc_id field and a value field. The
table maps doc_id/value pairs together, so that a where'd selection can be followed by a logical join to
determine subsets of records that match sort criteria.

XML::Comma Guide

 Table Type 2: The 'many tables' Table 72

	Table of Contents
	Introduction
	Installation
	Dependencies
	Configuration Variables
	Using the SimpleC Parser

	Documents and DocumentDefinitions
	 A Simple Doc and Def
	 Basic Manipulation: new(), element(), set() and get()
	 More Complex Structures: Nested Elements
	 Plural Elements
	Methods
	Do What I Mean: Shortcut Syntax
	Nested Element Helper Methods: elements_group_get() and Friends
	Whitespace: Ignored and Trimmed
	XML Escape/Unescape
	Flexible and Automatic Escape/Unescape
	Automatic Content: <default>
	Storing Dynamic Information in Defs: pnotes

	Storage and Retrieval
	The Store Definition
	Two Methods: store() and retrieve()
	Where Are the Files?
	Multiple Users and Processes: Permissions and Locking
	Iterating Over Stored Docs
	Location Chains

	Validation, Macros and Hooks
	Document Structure: Required Elements and validate()
	Element Content: Macros and validate_content()
	More Flexibility: Perl Hooks
	Writing New Macros
	#include: Defs From Components

	Indexing
	A User Index Definition
	Querying the Index: Iterators
	Plural Items in Indexes
	Complex Collection Selectors
	Full Text Search
	Using an Iterator Over and Over: iterator_refresh()
	Fetching the Record's Doc: read_doc() and retrieve_doc()
	Fetching One Record: single() and Company
	Getting a Total Rather Than an Iterator: count()
	Using SQL Aggregates: aggregate (function => ...)
	Actions at Index Time: index_hook
	Defining Methods for an Index
	More Configuration, More SQL
	Configuring Fields
	Configuring Collections
	The fields=> Argument

	Changes: Automatic Updating of Database Structure
	Clean and Rebuild

	Storage in More Detail: Hooks, Output Filters and Location Modules
	Hooks: pre_store_hook, post_store_hook, erase_hook
	More on Location Chains
	Standard _dir Modules
	Standard _file Modules

	Index_Only Storage
	Output Filters
	Writing New Output and Location Modules

	Blob Elements
	Grouping and Sorting Elements
	Prettifying: group_elements()
	Sorting: sort_elements()

	Error Handling and Logging
	Network Transfer
	 Client Methods
	 Server <Location /util/transfer> Configuration
	 Access Control and SSL Encryption

	Reference: Defs
	Reference: Hooks
	Reference: Perl API (Methods and Objects)
	Appendix: Table Structure of Index Databases
	The index_tables Table
	 Table Type 1: The Data Table
	 Table Type 2: The 'many tables' Table
	 Table Types 3 and 4: Textsearch Index and Defers Tables
	 Table Type 5: The 'binary table' Table

